SHARP SERVICE MANUAL

FACSIMILE

\section*{UX-510A model FO-1470
 | SELECTION CODE | DESTINATION |
| :---: | :---: |
| U | U.S.A. |
 U.S.A.}

CHAPTER 1. GENERAL DESCRIPTION
[1] Specifications 1-1
[2] Operation panel 1-2
[3] Transmittable documents 1-3
[4] Installation 1-4
[5] Quick reference guide 1-9
CHAPTER 2. ADJUSTMENTS
[1] Adjustments 2-1
[2] Diagnostics and service soft switch 2-2
[3] Troubleshooting 2-19
[4] Error code table 2-20
CHAPTER 3. MECHANISM BLOCKS
[1] General description 3-1
[2] Disassembly and assembly procedures 3-4
CHAPTER 4. DIAGRAMS
[1] Block diagram 4-1
[2] Wiring diagram 4-2
[3] Point-to-point diagram 4-3

CHAPTER 5. CIRCUIT DESCRIPTION

[1] Circuit description 5-1
[2] Circuit description of control PWB 5-2
[3] Circuit description of TEL/LIU PWB 5-8
[4] Circuit description of power supply PWB 5-11
[5] Circuit description of CCD PWB 5-11
CHAPTER 6. CIRCUIT SCHEMATICS AND PARTS LAYOUT
[1] Control PWB circuit 6-1
[2] TEL/LIU PWB circuit 6-9
[3] Power supply PWB circuit 6-13
[4] CCD PWB circuit 6-15
[5] Operation panel PWB circuit 6-16
CHAPTER 7. OPERATION FLOWCHART
[1] Protocol 7-1
[2] Power on sequence 7-2
CHAPTER 8. OTHERS
[1] Service tools 8-1
[2] IC signal name 8-4
[3] Changing the record paper size 8-6
PARTS GUIDE

Parts marked with " $\widehat{\text { " }}$ " are important for maintaining the safety of the set. Be sure to replace these parts with specified ones for maintaining the safety and performance of the set.

CAUTION FOR BATTERY REPLACEMENT

(Danish) ADVARSEL!

Lithiumbatteri-Eksplosionsfare ved fejlagtig håndtering. Udskiftning må kun ske med batteri af samme fabrikat og type. Levér det brugte batteri tilbage til leverandoren.

Caution!
Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the equipment manufacturer. Discard used batteries according to manufacturer's instructions.
(Finnish) VAROITUS
Paristo voi räjähtää, jos se on virheellisesti asennettu. Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiin. Hävitä käytetty paristo valmistajan ohjeiden mukaisesti.
(French)
ATTENTION
Il y a danger d'explosion s' il y a remplacement incorrect de la batterie. Remplacer uniquement avec une batterie du même type ou d'un type recommandé par le constructeur. Mettre au rébut les batteries usagées conformément aux instructions du fabricant.
(Swedish) VARNING
Explosionsfare vid felaktigt batteribyte.
Använd samma batterityp eller en ekvivalent typ som rekommenderas av apparattillverkaren. Kassera använt batteri enligt fabrikantens instruktion.

(German) Achtung

Explosionsgefahr bei Verwendung inkorrekter Batterien.
Als Ersatzbatterien dürfen nur Batterien vom gleichen Typ oder vom Hersteller empfohlene Batterien verwendet werden. Entsorgung der gebrauchten Batterien nur nach den vom Hersteller angegebenen Anweisungen.

CHAPTER 1. GENERAL DESCRIPTION

[1] Specifications

Automatic dialing:	Rapid Key Dialing: 36 numbers Speed Dialing: 63 numbers	Effective scanning width: Effective printing width:	8.2" (208 mm) max. 8.1" (206 mm) max.
Imaging film:	Initial starter roll (included with machine): Approx. 60 letter-size pages Replacement roll: UX-15CR/FO-15CR (One roll yields approx. 500 letter-size pages)	Contrast control:	Automatic/Dark selectable
		Reception modes:	TEL/FAX/A.M. (Note: A.M. mode is for connecting an answering machine)
		Copy function:	Single/Multi/Sort (99 copies/page)
Memory size* :	512 KB (approx. 30 average pages with ECM turned off)	Telephone function:	Yes (cannot be used if power fails)
Modem speed:	14,400 bps with Automatic Fallback to 2400 bps.	Power requirements: Operating temperature:	$120 \mathrm{~V} \mathrm{AC}, 60 \mathrm{~Hz}$ 41 to $95^{\circ} \mathrm{F}\left(5\right.$ to $\left.35^{\circ} \mathrm{C}\right)$
Transmission time* :	Horizontal: 203 pels/inch (8 dots/mm) Vertical: Standard: 98 lines/inch (3.85 lines $/ \mathrm{mm}$) Fine/Halftone: 196 lines/inch (7.7 lines/mm) Super fine: 391 lines/inch (15.4 lines/mm)	Humidity:	Maximum: 80 \% RH
Resolution:		Power consumption:	Stand-by: 3.6 W Maximum: 100 W
		Dimensions:	Width: 14.4" (365 mm) Depth: 19.0" (482 mm) (With attachments) Height: 10.6" (270 mm) (With attachments)
Automatic document feeder:	20 sheets max.	Weight:	Approx. $10.6 \mathrm{lbs} .(4.8 \mathrm{~kg}$)
Recording system:	Thermal transfer recording	* Based on ITU-T (CCITT) Test Chart \#1 at standard resolution in Sharp special mode, excluding time for protocol signals (i.e., ITU-T phase C time only).	
Halftone (grayscale):	64 levels		
Display:	7×5 dots, 1 line by 16-digit display		
Paper tray capacity: (16-to 20-lb. paper)	Letter: 200 sheets Legal: 200 sheets		
Compression scheme:	MH, MR, MMR		
Applicable telephone line:	Public switched telephone network		
Compatibility:	ITU-T (CCITT) G3 mode		
Input document size:	Automatic feeding: Width — 5.83 to $8.5^{\prime \prime}$ (148 to 216 mm) Length - 5.04 to 11" (128 to 279 mm) Manual feeding: Width — 5.83 to $8.5^{\prime \prime}$ (148 to 216 mm) Length - 5.04 to 39.4 " (128 to 1000 mm)		

[2] Operation panel

1. REDIAL key

Press this key to automatically redial the last number dialed.
2. SPEED DIAL key

Press this key to dial a fax or voice number using an abbreviated 2-digit Speed Dial number.

3. RECEPTION MODE key

Press this key to select the mode of reception.

4. Display

This displays messages and prompts during operation and programming.

5. VOLUME keys

Press these keys to adjust the volume of the speaker when the ESPEAKER key has been pressed, the volume of the handset when the handset is lifted, or the volume of the ringer at all other times.

6. MEMORY key

Press this key to scan a document into memory before transmitting it.

7. SHIFT key

Press this key before pressing the Rapid key.

8. Rapid Dial keys

Press one of these keys to dial a fax number automatically.

9. Open LCR key

Press this key to register for Open LCR service and receive carrier rate data to your fax.

10. RESOLUTION key

Press this key to adjust the resolution for faxing or copying.
11. STOP key

Press this key to cancel an operations before they are completed.
12. Panel release

Grasp this finger hold and pull toward you to open the operation panel.
13. START key

Press this key to begin transmission when using Speed
Dialing, Direct Keypad Dialing, or Normal Dialing.
14. COPY/HELP key

When a document is in the feeder, press this key to make a copy of a document. At any other time, press this key to print out the Help List, a quick reference guide to the opeation of your fax machine.

15. FUNCTION key

Press this key to select various special functions.
16. SPEAKER key

Press this key to listen to the line and fax tones through the speaker when faxing a document.
Note: This is not a speakerphone. You must pick up the handset to talk with the other party.

17. HOLD/SEARCH key

Press this key to search for an auto-dial number, or, during a phone conversation, press this key to put the other party on hold.
18. Number keys

Use these keys to dial numbers, and enter numbers and letters when storing auto-dial numbers.

[3] Transmittable documents

1. Document Sizes

Normal size	width	5.83 " $-8.5 "(148-216 \mathrm{~mm})$
	length	5.04 " -11 " $(128-279 \mathrm{~mm})$

** Use document carrier sheet for smaller documents.

* With special sizes, only one sheet can be fed into the machine at a time. Insert next page into feeder as current page is being scanned.

2. Paper Thickness \& Weight

	$\begin{array}{\|l\|} \hline 4 \times 6 \text { series } \\ (788 \mathrm{~mm} \times 1091 \mathrm{~mm} \times \\ 1000 \text { sheets }) \\ \hline \end{array}$		Square meter series	
	Minimum	Maximum	Minimum	Maximum
Feeder capacity	20 sheets, max.			
Paper weight	45 kg	64.3 kg	$52 \mathrm{~g} / \mathrm{m}^{2}$	$74.3 \mathrm{~g} / \mathrm{m}^{2}$
Paper thickness (ref.)	0.06 mm	0.09 mm	0.06 mm	0.09 mm
Paper size	$\begin{aligned} & 128 \mathrm{~mm} \times 148 \mathrm{~mm} \sim(\text { MIN. SIZE }) \\ & \text { A4 }(210 \mathrm{~mm} \times 297 \mathrm{~mm}), \text { Letter }(216 \mathrm{~mm} \times 279 \mathrm{~mm}) \\ & \hline \end{aligned}$			

3. Document Types

- Normal paper

Documents handwritten in pencil (No. 2 lead or softer), fountain pen, ball-point pen, or felt-tipped pen can be transmitted.

Documents of normal contrast duplicated by a copying machine can also be transmitted.

- Diazo copy (blue print)

Diazo copy documents of a normal contrast may be transmitted.

- Carbon copy

A carbon copy may be transmitted if its contrast is normal.

4. Cautions on Transmitting Documents

- Documents written in yellow, greenish yellow, or light blue ink cannot be transmitted.
- Ink, glue, and correcting fluid on documents must be dry before the documents can be transmitted.
- All clips, staples and pins must be removed from documents before transmission.
- Patched (taped) documents should be copied first on a copier and then the copies used for transmission.
- All documents should be fanned before insertion into the feeder to prevent possible double feeds.

5. Automatic Document Feeder Capacity

Number of pages that can be placed into the feeder at anytime is as follows:
Normal size: max. ADF 20 sheets
Special size: single sheet only (manual feed)
NOTES: - When you need to send or copy more pages than the feeder limit, place additional pages in feeder when last page in feeder is being scanned.

- Place additional pages carefully and gently in feeder. If force is used, double-feeding or a document jam may result.

6. Readable Width \& Length

The readable width and length of a document are slightly smaller than the actual document size.

Note that characters or graphics outside the effective document scanning range will not be read.

- Readable width
8.1" (206mm), max.

- Readable length

This is the length of the document sent minus $0.2^{\prime \prime}(5 \mathrm{~mm})$ from the top and bottom edges.

7. Use of Document Carrier Sheet

A document carrier sheet must be used for the following documents.

- Those with tears.
- Those smaller than size $5.83^{\prime \prime}(\mathrm{W}) \times 5.04^{\prime \prime}(\mathrm{L})(148 \mathrm{~mm}(\mathrm{~W}) \times 128 \mathrm{~mm}$ (L)).
- Carbon-backed documents

NOTE: To transmit a carbon-backed document, insert a white sheet of paper between the carbon back of the document and the document carrier.

- Those containing an easily separable writing substance (e.g., tracking paper written on with a soft, heavy lead pencil).
NOTES: - When using the document carrier, carefully read the instructions written on the back.
- If the document carrier is dirty, clean it with a soft, moist cloth, and then dry it before using for transmission.
- Do not place more than one document in the carrier at a time.

[4] Installation

1. Site selection

Take the following points into consideration when selecting a site for this model.

ENVIRONMENT

- The machine must be installed on a level surface.
- Keep the machine away from air conditioners, heaters, direct sunlight, and dust.
- Provide easy access to the front, back, and sides of the machine. In particular, keep the area in front of the machine clear, or the original document may jam as it comes out after scanning.
- The temperature should be between 5° and $35^{\circ} \mathrm{C}$.
- The humidity should be between 30% and 85% (without condensation).

ELECTRICITY

AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$, grounded (3-prong) AC outlet is required.

Caution!

- Connection to a power source other than that specified will cause damage to the equipment and is not covered under the warranty.
- If your area experiences a high incidence of lightning or power surges, we recommend that you install a surge protector for the power and telephone lines. Surge protectors can be purchased at most telephone speciality stores.

If the machine is moved from a cold to a warm place...

Condensation may form on the reading glass if machine is moved from a cold to a warm place, this will prevent proper scanning of documents for transmission. Turn on the power and wait approximately 2 hours before using machine.

TELEPHONE JACK

A standard RJ11C telephone jack must be located near the machine. This is the telephone jack commonly used in most homes and offices.

- Plugging the fax machine into a jack which is not a RJ11C jack may result in damage to the machine or your telephone system. If you do not know what kind of jack you have, or needed to have one installed, contact the telephone company.

2. Loading the imaging film (UX-15CR/FO-15CR)

Your fax uses a roll of imaging film to create printed text and images. The print head in the fax applies heat to the imaging film to transfer ink to the paper. Follow the steps below to load or replace the film.

- The initial starter roll of imaging film included with your fax can print about 60 letter-size pages.
- When replacing the film, use a roll of Sharp UX-15CR/FO-15CR imaging film. One roll can print about 500 letter-size pages.
(1) Press the release marked OPEN and open the print compartment cover.
- Caution! The printing head (the strip of metal on the underside of the cover) applies heat to the printing film. It may be hot if a document has just been printed.

(2) If you are replacing the imaging film, take the old film out of the printing compartment and remove the three (3) green gears and the green flange from the ends of the spools.
DO NOT DISCARD THE GREEN GEARS AND THE GREEN FLANGE!

(3) Take the new film out of its package, and insert two of the gears provided with the fax into the ends of the spool with film. Make sure that the two tabs on the gears fit properly into the slots in the ends of the spool.
- Do not yet remove the band which holds the spools together.

(4) Hold the empty spool so that the end with only one slot is on the left, and lower the spools into the front of the printing compartment. The gears in the ends of the spool with film should fit into the slots on each side of the printing compartment.

(5) Cut the band which holds the spools together with scissors, and remove it. Insert the remaining gear into the right end of the empty spool and the flange into the left end of the empty spool. Make sure the tabs on the gear and the flange fit into the slots in the ends of the spool (the gear has two tabs and the flange has one tab).

(6) Pull the empty spool toward the back of the compartment, unwinding the film as you pull.

(7) Insert the empty spool into the back of the compartment so that the gear and the flange fit into the slots on the sides of the compartment.
- Make sure that the gear engages with the gear below it.

(8) Wind the film slightly (rotate the gear on the right side of the empty spool) so that there is no slack in the film. Make sure that both edges of the film wind onto the spool evenly.

(9) Close the print compartment cover, making sure it clicks into place.
- Caution! Close the cover slowly to make sure it doesn't pinch your fingers.

(10) Load paper in the paper tray and then press the following keys to initialize the film.
Note: Paper must be loaded before the film can be initialized. To load paper, see Loading the Printing Paper.

When to replace the imaging film

Replace the imaging film when the display shows:

FILM END

Use the following imaging film, which is available from your dealer or retailer: Sharp UX-15CR/FO-15CR Imaging Film

- Caution! The text of documents printed with the imaging film is visible on the used film. If confidential information has been printed, dispose of the film appropriately.

3. Assembly and connections

(1) Plug the power cord into a $120 \mathrm{~V}, 60 \mathrm{~Hz}$, grounded(3-prong) outlet.

- Caution: Do not plug the power cord into any other kind of outlet. This will damage the machine and is not covered under the warranty.
- The machine does not have a power on/off switch, so the power is turned on and off by simply plugging in or unplugging the power cord.
Note: If your area experiences a high incidence of lightning or power surges, we recommend that you install surge protectors for the power and telephone lines. Surge protectors can be purchased at most telephone specialty stores.

(2) Connect the handset as shown and place it on the handset rest.

Make sure the handset cord goes into the unmarked jack on the side of the machine!
Use the handset to make ordinary phone calls, or to transmit and receive faxes manually.
(3) Insert one end of the line cord into the jack on the back of the machine marked TEL.LINE. Insert the other end into a standard (RJ11C) single-line wall telephone jack.
Be sure to insert the line into the TEL.LINE jack.
Do not insert into the TEL.SET jack.

Note: The fax machine is set for tone dialing. If you are on a pulse dial line, you must set the fax machine for pulse dialing.
Press the keys on the operation panel as follows:

1. Press these keys:

2. Press $\mathbf{1}$ to select tone dialing, or $\mathbf{2}$ to select pulse dialing.

3. Press the STOP key to return to the date and time display.

(4) Insert the paper tray into the back of the fax as shown.

4. Loading printing paper

The paper tray holds the paper on which received documents and copies are printed. Up to 200 sheets of letter or legal paper from 16 to 20 lbs . (60 to $75 \mathrm{~g} / \mathrm{m}^{2}$) can be loaded in the tray. Less sheets can be loaded when using heavier paper. The maximum allowed paper weight is $24 \mathrm{lbs} .\left(90 \mathrm{~g} / \mathrm{m}^{2}\right)$.

Note: When receiving or copying documents, do not allow more than 100 pages to collect in the received documents outlet. Otherwise, the outlet may become obstructed, causing paper jams.

- Caution! Do not use the blank side of paper that has already been printed on.
(1) Remove the paper cover if it is on the paper tray.
- If you are going to load legal size paper, flip up the paper tray extender.

(2) Fan the paper, and then tap the edge against a flat surface to even the stack.

(3) Pull the paper release plate toward you and insert the stack of paper into the tray, print side down
- If paper remains in the tray, take it out and combine it into a single stack with the new paper before adding the new paper.

(4) Replace the paper cover on the paper tray.
- Important: Be sure to replace the paper cover before you put back the paper release plate down.

Note: If the display shows the following alternating messages when making a copy or receiving a fax, check the paper tray. If the tray is empty, add paper and then press the START key. If there is paper, make sure it is inserted correctly and then press the START key.

(5) The fax has been set at the factory to scale the size of received faxes to letter size paper. If you have loaded legal paper, you must change the paper size setting to legal. Press these keys:

The display will show: PAPER SIZE SET
Press $\mathbf{1}$ to select LETTER, $\mathbf{2}$ to select LEAGAL.

The display will show: COPY CUT-OFF
Press the STOP key to return to the date and time display.

(6) Your fax has been set at the factory to print at normal contrast. Depending on the type of paper you have loaded, you may find that you obtain better print quality by changing the setting to LIGHT.
Press these keys:

The display will show: \qquad FUNCTION
(6)

Press $\mathbf{1}$ to select NORMAL or $\mathbf{2}$ to select LIGHT. NORMAL LIGHT
(1) or 2

The display will show: PAPER SIZE SET stop
Press the STOP key to return to the date and time display. θ

5. Clearing paper jams

If a document doesn't feed properly during transmission or copying, or DOCUMENT JAMMED appears in the display, first try pressing the START key. If the document doesn't feed out, open the operation panel (grasp the front edge at the "PANEL RELEASE" mark and pull up) and pull it out gently.
(1) Press the release marked OPEN and open the print compartment cover.

- Caution! The printing head (the strip of metal on the underside of the frame) applies heat to the imaging film. It may be hot if a document has just been printed.

(2) Remove the imaging film from the printing compartment and set it on a sheet of paper.

(3) Gently pull the jammed paper out of the printing compartment.

(4) Replace the imaging film, making sure that the flange goes into the rear slot on the left side of the printing compartment. Also, make sure that the right, rear gear engages with the gear below it.

(5) Wind the film slightly (rotate the gear on the right side of the rear spool) so that there is no slack in the film. Make sure that both edges of the film wind onto the spool evenly.

(6) Close the print compartment cover, making sure it clicks into place.
- Caution! Close the cover slowly to make sure it doesn't pinch your fingers.

[5] Quick reference guide

ENTERING YOUR NAME AND NUMBER

1. Press: ${ }^{\text {FUNCTION }}$
(3) \# \#

Display shows: OWN NUMBER SET
2. Press: start
3. Enter your fax number (max. of 20 digits) by pressing the number keys.

- To insert a space between digits, press the \# key.
- If you make a mistake, press the SPEED DIAL key to backspace and clear the mistake.

4. Press: Start
5. Enter your name by pressing the appropriate number keys as shown below.

- To enter two letters in succession that require the same key, press the SPEAKER key after entering the first letter.

- To change case, press the REDIAL key.

Press \# or * to scroll through symbols and special characters.
6. When finished, press: $\stackrel{\text { sTART }}{\Delta}$

SETTING THE DATE AND TIME

1. Press: $\stackrel{\text { FUNCTION }}{\square}(3) \circledast \circledast \circledast$

Display shows: DATE \& TIME SET
2. Press: $\frac{\text { start }}{\Delta \mid}$
3. Enter two digits for the month (01 to 12).
4. Enter two digits for the day (01 to 31)
5. Enter four digits for the year (Ex: 2000).
6. Enter two digits for the hour (01 to 12)
and two digits for the minute (00 to 59).
7. Press $*$ for A.M. or \# for P.M.
8. When finished, press: $\stackrel{\text { staRT }}{\text { sTop }}$

STORING AND CLEARING AUTO DIAL NUMBERS

1. Press: $\stackrel{\text { FUNCTION (3) \# }}{\square}$

Display shows: FAX/TEL \# MODE
2. Press $\mathbf{1}$ to store a number or $\mathbf{2}$ to clear a number.
3. Enter a 2 -digit number (from "01" to "99") by pressing the number keys. This will be the Speed Dial number. (If you are clearing a number, go to Step 7.)
4. Enter the full fax/telephone number.
5. Press: start
6. Enter the name of the location by pressing number keys (Refer to the letter entry table in ENTERING YOUR NAME AND NUMBER.)
7. Press:
 $\stackrel{\text { stop }}{\stackrel{\text { sin }}{2}}$

SENDING FAXES

Place your document (up to 20 pages) face down in the document feeder.

Normal Dialing

1. Lift the handset or press SPEAKER
. Dial the fax number.
2. Wait for the reception tone (if a person answers, ask them to press their Start key).
3. Press: $\stackrel{\text { start }}{1}$

Rapid Key Dialing
Press the appropriate Rapid Key (if the Rapid Key is from 19 to 36, press the SHIFT key first).
Transmission will begin automatically.

Speed Dialing

1. Press

2. Enter 2-digit Speed Dial number.
3. Press: $\stackrel{\text { start }}{1}$

RECEIVING FAXES

Press the RECEPTION MODE key until the appears in the display points to the desired reception mode.

FAX mode: The fax machine automatically answers on four rings and receives the incoming document.
TEL mode:

A.M. mode: Select this mode when an answering machine is connected to the fax and the answering machine is turned on.

MEMO

CHAPTER 2. ADJUSTMENTS

[1] Adjustments

General

Since the following adjustments and settings are provided for this model, make adjustments and/or setup as necessary.

1. Adjustments

Adjustments of output voltage (FACTORY ONLY)

1. Install the power supply unit in the machine.
2. Set the recording paper and document.
3. When the document is loaded, power is supplied to the output lines. Confirm that outputs are within the limits below.

Output	Voltage limits
+5 V	$4.75 \mathrm{~V} \sim 5.25 \mathrm{~V}$
+24 V	$23.3 \mathrm{~V} \sim 24.7 \mathrm{~V}$

Connector No.	CNPW
Pin No.	+24 V
1	+24 V
2	MG
3	MG
4	+5 V
5	DG
6	

2. IC protectors replacement

ICPs (IC Protectors) are installed to protect the motor driver circuit. ICPs protect various ICs and electronic circuits from an overcurrent condition.

The location of ICPs are shown below:

CONTROL
PWB (TOP SIDE)
CNLIUA
FU100
氮

(1) FU100 (KAB2402) is installed in order to protect IC's from an overcurrent generated in the motor drive circuit. If FU100 is open, replace it with a new one.

3. Settings

(1) Dial mode selector

DIAL mode (Soft Switch No. SWB4 DATA No. 3)
(step 1) Select "OPTION SETTING".

$$
\begin{array}{ll}
\text { KEY: } & \text { FUNCTION (4) } \\
\text { DISPLAY: } & \text { OPTION SETTING } \Leftrightarrow \text { PRESS } * \text { OR \# }
\end{array}
$$

(step 2) Select "DIAL MODE".

(step 3) Select, using "1" or "2".

> KEY: (1)

DISPLAY: TONE SELECTED
KEY: (2)
DISPLAY: PULSE SELECTED
(step 4) End, using the "STOP" key.

4. Volume adjustment

You can adjust the volume of the speaker and ringer using the UP and DOWN keys.

(1) Speaker

(1) Press the SPEAKER key.
(2) Press the UP or DOWN key.

Display:

(3) When the display shows the desired volume level, press the SPEAKER key to turn off the speaker.
(2) Handset
(1) Lift the handset.
(2) Press the UP or DOWN key.

(3) When the display shows the desired volume level, replace the handset.
(3) Ringer
(1) Press the UP or DOWN key. (Make sure the SPEAKER key has not been pressed and the handset is not lifted.)

Display:

The ringer will ring once at the selected level, then the date and time will reappear in the display.

[2] Diagnostics and service soft switch

1. Operating procedure

(1) Entering the diagnostic mode

Press FUNC $\rightarrow 9 \rightarrow 母 \rightarrow 8 \rightarrow \# \rightarrow 7$, and the following display will appear.
ROM Ver. FPSO \mathcal{W} After 2 sec: DIAG MODE

FPSO *

Then press the START key. Select the desired item with the \forall key or the \#key or select with the rapid key. Enter the mode with the START key. (Diag•specifications)

If the diag mode cannot be set, repeat the diag mode operation, performing the following operation.
After the power is turned on and "WAIT A MOMENT" is indicated, press the STOP key.

In relation with the process response (request from Production Engineering) "WAIT A MOMENT" clock indication may appear depending on STOP key timing. If the STOP key is held down, "MEMORY CLEAR?" appears.

2. Diagnostic items

ITEM No.	DIRECT key	Contents	
1	1	SOFT SWITCH MODE	Soft switches are displayed and changed. List can be output.
2	2	ROM \& RAM CHECK	ROM is sum-checked, and RAM is matched. Result list is output.
3	3	AGING MODE	10 sheets of check patterns are output every 5 minutes per sheet.
4	4	PANEL KEY TEST	Panel keys are tested. Result list is output.
5	5	CHECK PATTERN	Check pattern is output.
6	6	SIGNAL SEND MODE	Various signals of FAX communication are output.
7	7	MEMORY CLEAR	Back-up memory is cleared, and is set at delivery.
8	8	CCD ADJUST MODE	Optical system is adjusted.
9	9	ALL BLACK PRINT	To check the print head, whole dots are printed over the interval of 2 m.
10	10	AUTO FEEDER MODE	Insertion and discharge of document are tested.
11	11	ENTRY DATA SEND	Registered content is sent.
12	12	ENTRY DATA RECEIVE	Registered content is received, and its list is output.

3. Diagnostic items description

3. 1. Soft switch mode

Used to change the soft switch settings.
The soft switch which is stored internally is set by using the keys.
The available soft switches are SW-A1 to SW-N3.
The content of soft switches is shown in page 2-5 to 2-18.
The contents are set to factory default settings.

3. 2. ROM \& RAM check

ROM executes the sum check, and RAM executes the matching test.
The result will be notified with the number of short sounds of the buzzer as well as by printing the ROM \& RAM check list.
Number of short sounds of buzzer $0 \rightarrow$ No error

$$
\begin{aligned}
& 1 \rightarrow \text { ROM error } \\
& 2 \rightarrow \text { RAM error (32Kbyte) }
\end{aligned}
$$

3. 3. Aging mode

If any document is first present, copying will be executed sheet by sheet. If no document is present, the check pattern will be printed sheet by sheet. This operation will be executed at a rate of one sheet per $5 \mathrm{~min}-$ utes, and will be ended at a total of 10 sheets.

3. 4. Panel key test

This mode is used to check whether each key operates properly or not. Press the key on the operation panel, and the key will be displayed on the display. Therefore, press all keys. At this time, finally press the STOP key.

When the STOP key is pressed, the keys which are not judged as "pressed" will be printed on the result list.

- LED part of the contact image sensor (CIS) is kept on during the term from when "START" of the panel test mode to end with the STOP key.

3. 5. Check pattern

This mode is used to check the state of the printing head. It is ended with the following pattern printed on one printing sheet.
(1) Longitudinal stripe 2 Approx. 30 mm

2 black dots and 2 white dots are repeatedly progressed on one line.

(2) Full black

Approx. 30 mm

3. 6. Signal send mode

This mode is used to send various signals to the circuit during FAX communication. Every push of START key sends a signal in the following sequence. Moreover, the signal sound is also output to the speaker when the line monitor of the soft switch is on.
[1] No signals (CML ON)
[2] 14400BPS (V.33)
[3] 12000BPS (V.33)
[4] 14400BPS (V.17)
[5] 12000BPS (V.17)
[6] 9600BPS (V.17)
[7] 7200BPS (V.17)
[8] 9600BPS (V.29)
[9] 7200BPS (V.29)
[10] 4800BPS (V27ter)
[11] 2400BPS (V27ter)
[12] FLAG
[13] 2100 Hz
[14] 1100 Hz

3. 7. Memory clear

This mode is used to clear the backup memory and reset to the default settings.

3. 8. CCD adjust mode

This mode is used to adjust the optical system. Since the copy is function performed, set the original. To abort the copy operation, press the STOP key. To restart press the START key. When the copy is completed or when the STOP key is pressed in the interruption state, exit from this mode occurs.

3. 9. All black print

This mode is used to check the state of the printing head and intentionally overheat it. Whole dots are printed over the interval of 2 m . If it is overheated or the printing sheet is jammed, press STOP key for the end.

3. 10. Auto feeder mode

In this mode, a document is inserted and discharged to check the auto feed function.

After this mode is started, set a document, and the document feed will be automatically tested.

3.11. Entry data send

This mode is used to send the registered data to the other machine and make the other machine copy the registered content.

Before sending in this mode, it is necessary to set the other machine at the entry data receive mode.

The following, information will be sent to the remote machine:

1. Telephone list data
2. Sender register data
3. Optional setting content
4. Soft switch content
5. Junk fax number list
6. Timer reservation data (only on the model which timer reservation is possible)
7. Recording setting list data

3. 12. Entry data receive

In this mode, the registered data sent from the other machine is received and the received data is registered in the machine. When this mode is used for receiving, the other machine must be in the entry data send mode.
After receiving is completed, the following lists are printed.

1. Telephone list data
2. Sender register data (The passcode No. is also printed if the polling function is provided.)
3. Optional setting list
4. Soft switch content
5. Junk fax number list
6. Timer reservation list (only model which timer communication is possible)
7. Recording setting list data

4. How to make soft switch setting

To enter the soft switch mode, press the following key entries in sequence.

5. Soft switch description

- Soft switch

SW	$\begin{aligned} & \text { DATA } \\ & \text { NO. } \end{aligned}$	ITEM	Switch setting and function					Initial setting	Remarks
NO.			1		0				
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { E1 } \end{gathered}$	1	Reserved						0	
	2	Reserved						0	
	3	Reserved						0	
	4	Reserved						0	
	5	Reserved						0	
	6	Reserved						0	
	7	Reserved						0	
	8	Reserved						0	
$\begin{gathered} \text { SW } \\ 1 \\ \text { E2 } \end{gathered}$	1	Reserved						0	
	2	Reserved						0	
	3	Reserved						0	
	4	Reserved						0	
	5	Reserved						0	
	6	Reserved						0	
	7	Reserved						0	
	8	Reserved						0	
$\begin{array}{\|c} \text { SW } \\ \text { I } \\ \text { E3 } \end{array}$	1	Reserved						0	
	2	Reserved						0	
	3	Reserved						0	
	4	Reserved						0	
	5	Reserved						0	
	6	Reserved						0	
	7	Reserved						0	
	8	Reserved						0	
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { F1 } \end{gathered}$	1	DTMF detection time		50ms	80ms	100 ms	120ms	0	
			No. 1	0	0	1	1		
			No. 2	0	1	0	1		
	3	Protection of remote reception (5 WЖ) detect	Yes		No			0	OPTION
	4	Remote reception with GE telephone	Compatible		Not compatible			1	
	5	Remote operation code figure by external TEL (0~9)	No. =	$\begin{array}{cc} \text { inary inf } \\ 4 & 2 \\ 6 & 7 \\ 1 & 0 \end{array}$				$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	OPTION
$\begin{array}{\|c} \text { SW } \\ \text { I } \\ \text { F2 } \end{array}$	1	CNG detection in STAND-BY mode	Yes		No			1	OPTION
	23	Number of CNG detect (AM mode)		1pulse	2pulses	3pulses	4pulses	0	
			No. 2	0	0	1	1		
			No. 3	0	1	0	1		
	4	Number of CNG detect (STAND-BY mode)		1 pulse	2pulses	3pulses	4pulses		
			No. 4	0	0	1	1	0	
			No. 5	0	1	0	1	1	
	6	Reserved						0	
	7	Reserved						0	
	8	Reserved						0	
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { G1 } \end{gathered}$	1 2 3 4	Quiet detect time	No. =	$\begin{array}{rl} \text { inary inf } \\ 4 & 2 \\ 2 & 3 \\ 1 & 0 \end{array}$				$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OPTION
	5 6 7 8	Quiet detect start timing	No. =	$\begin{array}{cc} \hline \text { inary } & \text { inp } \\ 4 & 2 \\ 6 & 7 \\ 1 & 0 \end{array}$				$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	

$\begin{array}{\|l\|} \hline \text { SW } \\ \text { NO. } \end{array}$	$\begin{aligned} & \text { DATA } \\ & \text { NO. } \end{aligned}$	ITEM	Switch setting and function					Initial setting	Remarks
			1		0				
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { G2 } \end{gathered}$	1	Reserved						0	
	2	Reserved						0	
	3	Reserved						0	
	4	Reserved						0	
	5	Reserved						0	
	6	Reserved						0	
	7	Reserved						0	
	8	Reserved						0	
$\begin{array}{\|c} \text { SW } \\ \text { I } \\ \text { G3 } \end{array}$	1	OGM detect timer		Not work	100ms	200 ms	300 ms	0	
			No. 1	0	0	1	1		
			No. 2	0	1	0	1		
	3	Reserved						0	
	4	Reserved						0	
		Selection time of quiet detection		30s	40s	50s	60s		
	5		No. 5	0	0	1	1	0	
	6		No. 6	0	1	0	1	1	
	7	Choice after quiet detect	Wait respo	or 3sec	Norm	FAX RX		1	
	8	Reserved						0	
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { H1 } \end{gathered}$	12	Busy tone detection ON/OFF time (Lower duration)		150 ms	200ms	250ms	350 ms	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	
			No. 1	0	0	1	1		
			No. 2	0	1	0	1		
	34	Busy tone detection ON/OFF time (Upper duration)		650 ms	900 ms	1500 ms	2700ms	01	
			No. 3	0	0	1	1		
			No. 4	0	1	0	1		
	5	Reserved						0	
	6	Busy tone detect continuation sound detect (during ICM: for internal A.M.)	No		Yes			0	
	7	Reserved						0	
	8	Busy tone detect intermittent sound detect (during ICM: for internal A.M.)	No		Yes			0	
$\begin{gathered} \text { SW } \\ 1 \\ \text { H2 } \end{gathered}$	12	Busy tone detection pulse number		2pulses	4pulses	6pulses	10pulses	01	
			No. 1	0	0	1	1		
			No. 2	0	1	0	1		
	3	Fax switching when A.M. full	Yes		No			0	OPTION
	4	Reserved						0	
	5	Reserved						0	
	6	Reserved						0	
	7	Reserved						0	
	8	Busy tone continuous sound detect time	5s		10s			1	
$\begin{array}{\|c} \hline \text { SW } \\ \text { I } \\ \text { I1 } \end{array}$	1	Reserved						0	
	2	Reserved						0	
	3	Reserved						0	
	4	Reserved						0	
	5	Reserved						0	
	6	Reserved						0	
	7	Reserved						0	
	8	Reserved						0	
$\begin{gathered} \text { SW } \\ \text { I } \\ 12 \end{gathered}$	1	Reserved						0	
	2	Reserved						0	
	3	Reserved						0	
	4	Reserved						0	
	5	Reserved						0	
	6	Reserved						0	
	7	Reserved						0	
	8	Reserved						0	

UX-510UA
FO-1470U

$\begin{aligned} & \text { SW } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { DATA } \\ & \text { NO. } \end{aligned}$	ITEM	Switch setting and function				Initial setting	Remarks
			1		0			
$\begin{gathered} \text { SW } \\ \text { । } \\ \text { I3 } \end{gathered}$	1	Reserved					0	
	2	Reserved					0	
	3	Reserved					0	
	4	Reserved					0	
	5	Reserved					0	
	6	Reserved					0	
	7	Reserved					0	
	8	Reserved					0	
$\begin{gathered} \text { SW } \\ \text { । } \\ 14 \end{gathered}$	1	Reserved					0	
	2	Reserved					0	
	3	Reserved					0	
	4	Reserved					0	
	5	Reserved					0	
	6	Reserved					0	
	7	Reserved					0	
	8	Reserved					0	
$\begin{gathered} \text { SW } \\ \text { । } \\ 15 \end{gathered}$	1	Reserved					0	
	2	Reserved					0	
	3	Reserved					0	
	4	Reserved					0	
	5	Reserved					0	
	6	Reserved					0	
	7	Reserved					0	
	8	Reserved					0	
$\begin{gathered} \text { SW } \\ 1 \\ 16 \end{gathered}$	1	Reserved					0	
	2	Reserved					0	
	3	Reserved					0	
	4	Reserved					0	
	5	Reserved					0	
	6	Reserved					0	
	7	Reserved					0	
	8	Reserved					0	
$\begin{gathered} \text { SW } \\ 1 \\ 17 \end{gathered}$	1	Reserved					0	
	2	Reserved					0	
	3	Reserved					0	
	4	Reserved					0	
	5	Reserved					0	
	6	Reserved					0	
	7	Reserved					0	
	8	Reserved					0	
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { J1 } \end{gathered}$	1	Activity report print	Automatic printout	No p	ut when	nory full	0	OPTION
	2	Total communication hours and pages print	No	Yes			0	
	3	Sender's phone number setting	Cannot change	Cha	allowed		0	
	4	Reserved					0	
	5	Reserved					0	
	6	Summer time setting	No	Yes			1	OPTION
		Ringer volume	Off	Low	Middle	High	10	OPTION
	7		No. 7 \% 0	0	1	1		
	8		No. 8 0	1	0	1		

UX-510UA
FO-1470U

- Soft switch function description

SW-A1 No. 1 Protect from echo

Used to protect from echo in reception.

SW-A1 No. 2 Forced 4800BPS reception

When line conditions warrant that receptions take place at 4800BPS repeatedly.

It may improve the success of receptions by setting at 4800BPS.
This improves the receiving document quality and reduces handshake time due to fallback during training.

SW-A1 No. 3 Footer print

When set to "1", the date of reception, the sender machine No., and the page No. are automatically recorded at the end of reception.

SW-A1 No. 4 Length limitation of copy/send/receive

Used to set the maximum page length.
To avoid possible paper jam, the page length is normally limited to 1 meter for copy or transmit, and 1.5 meters for receive.

It is possible to set it to "No limit" to transmit a long document, such as a computer print form, etc. (In this case, the receiver must also be set to no limit.)

SW-A1 No. 5 CSI transmission

(CSI TRANSMISSION) is a switch to set whether the machine sends or does not send the signal (CSI signal) informing its own telephone No. to the remote fax machine when information is received. When "nonsending" is set, the telephone No. is not output on the remote transmitting machine if the remote transmitting machine has the function to display or print the telephone No. of receiving machine, using this CSI signal.
SW-A1 No. 6 DIS receive acknowledgment during G3 transmission Used to make a choice of whether reception of DIS (NSF) is acknowledged after receiving two DISs (NSFs) or receiving one DIS (two NSFs). It may be useful for overseas communication to avoid an echo suppression problem, if set to 1 .
SW-A1 No. 7 Non-modulated carrier for V29 transmission modem
Though transmission of a non-modulated carrier is not required for transmission by the V29 modem according to the CCITT recommendation, it may be permitted to a send non-modulated carrier before the image signal to avoid an echo suppression problem. It may be useful for overseas communication to avoid an echo suppression problem, if set to 1 .

SW-A1 No. 8 EOL (End Of Line) detect timer

Used to make a choice of whether to use the 25 -second or 13 -second timer for detection of EOL
This is effective to override communication failures with some facsimile models that have longer EOL detection.

SW-A2 No. 1 ~ No. 4 Modem speed

Used to set the initial modem speed. The default is 9600BPS.
It may be necessary to program it to a slower speed when frequent line fallback is encountered, in order to save the time required for fallback procedure.

SW-A2 No. 5 Sender's information transmit

(SENDER'S INFORMATION TRANSMISSION) is a switch to set the function to print the content of HEADER PRINT described in the passcode list at the front end of receiver's original when original is sent to the remote machine.

If this switch is set to "NO", the HEADER PRINT is not output at the receiving machine.

SW-A2 No. 6 Reserved

Set to "0".

SW-A2 No. 7 Communication error treatment in RTN sending mode (Reception)

Used to determine communication error treatment when RTN is sent by occurrence of a received image error in G3 reception. When it is set to "1", communication error is judged as no error.

SW-A2 No. 8 CNG transmission

When set to "0", this model allows CNG transmission by pressing the Start key in the key pad dialing mode. When set to "1", CNG transmission in the key pad dialing mode cannot be performed. In either case. CNG transmission can be performed in the auto dial mode.

SW-A3 No. 1, No. 2 CED tone signal interval

For international communication, the 2100 Hz CED tone may act as an echo suppression switch, causing a communication problem.

Though SW-A3 No. 1 and No. 2 are normally set to 0 , this selfing is used to change the time between the CED tone signal to eliminate the communication caused by echo.

SW-A3 No. 3 MR Coding
MR Coding is enable.
SW-A3 No. 4 ECM mode
Used to determine ECM mode function. Refer to following table.

SW-A3 No.4 ECM MODE		0	0	1	1
SW-A3 No.5 ECM MMR MODE		0	1	0	1
Compression method	ECM MMR mode	Yes	No	No	No
	ECM MH mode	Yes	Yes	No	No
	MR Mode	Yes	Yes	Yes	Yes

(Depending on remote machine)
SW-A3 No. 5 ECM MMR mode
See SW-A3 No. 4.

SW-A3 No. 6 ~ No. 8 Reserved

Set to "0".

SW-A4 No. 1 ~ No. 5 Signal transmission level

Used to control the signal transmission level in the range of-0dB to31 dB .

SW-A4 No. 6 Protocol monitor (Error print)

If set to "1", protocol is printed at communication error.

SW-A4 No. 7 Protocol monitor

Normally set to " 0 ". If set to " 1 ", communication can be checked, in case of trouble, without using a G3 tester or other tools.
When communication FSK data transmission or reception is made, the data is taken into the buffer. When communication is finished, the data is analysed and printed out. When data is received with the line monitor (SW-A4 No. 8) set to "1" the reception level is also printed out.

SW-A4 No. 8 Line monitor

Normally set to " 0 ". If set to " 1 ", the transmission speed and the reception level are displayed on the LCD. Used for line tests.

SW-A5 No. 1, No. 2 Digital line equalization setting (Reception)
Line equalization when reception is to be set according to the line characteristics.

Setting should be made according to distance between the telephone and the telephone company central switching station.

SW-A5 No. 3, No. 4 Digital line equalization setting (Transmission)
Line equalization when transmitter is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.

SW-A5 No. 5, No. 6 Digital cable equalizer setting

(Reception for Caller ID)

Line equalization when reception for CALLER ID is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.

SW-A5 No. 7 Error criterion

Used to select error criterion for sending back RTN when receiving image data.

SW-A5 No. 8 Anti junk fax check

When using the Anti junk fax function, set to "1".

SW-A6 No. 1 Auto gain control (MODEM)

When this mode is enabled, if the reception signal level is under 31 dBm , the modem itself controls the signal gain automatically.

SW-A6 No. 2 End buzzer

Setting this bit to 0 will disable the end buzzer (including the error buzzer/ on-hook buzzer).

SW-A6 No. 3 Disconnect the line when DIS is received in RX mode Bit $1=0$: When DIS signal is received during $R X$ mode, the line is disconnected immediately.

Bit $1=1$:When DIS signal is received during $R X$ mode, the line is disconnected on the next tone.

SW-A6 No. 4 Equalizer freeze control (MODEM)

This switch is used to perform reception operation by fixing the equalizer control of modem for the line which is always in an unfavorable state and picture cannot be received.

* Usually, the control is executed according to the state of line where the equalizer setting is changed always.

SW-A6 No. 5 Equalizer freeze control 7200BPS only

Setting which specifies SW-A3 No. 6 control only in the condition of 7200BPS modem speed.

SW-A6 No. 6 CNG transmission in manual TX mode

When set to "1", fax transmit the CNG signal in case of manual transmission mode (User press the START key after waiting for the fax answering signal from handset or speaker).

SW-A6 No. 7 Reserved

Set to "0".
SW-A6 No. 8 Modem speed automatic fallback when RX level is under -40dBm
When set to "1", if fax signal level is under -40 dBm during reception, machine selects the slower modem speed automatically.
It is effective when noises occur on the received document due to the long distance communications.

SW-B1 No. 1 ~ No. 4 Recall interval

Choice is made for a redial interval for speed and rapid dial calls.
Use a binary number to program this. If set to 0 accidentally, 1 will be assumed.

SW-B1 No. 5 ~ No. 8 Recall times

Choice is made as to how many redials there should be.
SW-B2 No. 1 Dialing pause (sec/pause)
Pauses can be inserted between telephone numbers of direct dial connection. Selection of 4 sec or 2 sec pause is available.

SW-B2 No. 2 Dial tone detection (before auto dial)
Used to set YES/NO of dial tone detection in auto dialing.

SW-B2 No. 3 Reserved

Set to "0".
SW-B2 No. 4 Busy tone detection (after auto dial)
Used to set busy tone detection in auto dialing.
SW-B2 No. 5, No. 6 Waiting time after dialing
This is time waiting for the opponent's signals after dialing.

SW-B2 No. 7, No. 8 Reserved

Set to "0".

SW-B3 No. 1 ~ No. 5 Reserved

Set to " 0 ".
SW-B3 No. 6, No. 7 Auto dial mode Delay timer of before line connect
Delay time between the dial key input and line connection under the auto dial mode.

SW-B3 No. 8 Hold key
Used to set YES/NO of holding function by the HOLD key.
SW-B4 No. 1, No. 2 Auto dial mode Delay timer of after line connect Delay time between the line connection and dial data output under the auto dial mode.

SW-B4 No. 3 Dial mode

When using the pulse dial, set to 1 . When using the tone dial, set to 0 .
SW-B4 No. 4 Pulse \rightarrow Tone change function by $\not \star$ key
When setting to 1 , the mode is changed by pressing the $\not *$ key from the pulse dial mode to the tone dial mode.
SW-B4 No. 5 Dial pulse make/break ratio (\%)
When using the 33% make ratio pulse dial, set to " 0 ".
When using the 40% make ratio pulse dial, set to " 1 ".

SW-B4 No. 6, No. 7 Reserved

Set to "0".
SW-B4 No. 8 Recalling fixed only one time when dialing was unsuccessful without detecting busy tone signal
When dialing results in failure since the busy tone cannot be detected, recalling is fixed to one time.
Supplementary explanation
If time-out termination is made when dialing, only single recall is possible even if the setting time of recalls (SW-B1 No. $5-$ No. 8) has been set to some times. This soft switch is added in order to meet FCC.

SW-B5 No. 1 ~ No. 5 DTMF signal transmission level (Low)

The transmission level of DTMF signal is adjusted. (lower frequency)

```
00000: 0dBm
```

\downarrow
11111: $-15.5 \mathrm{dBm}(-0.5 \mathrm{dBm} \times 31)$

SW-B5 No. 6 ~ No. 8 Reserved

Set to "0".
SW-B6 No. 1 ~ No. 5 DTMF signal transmission level (High)
The transmission level of DTMF signal is adjusted. (higher frequency) 00000: 0dBm
\downarrow
11111: -15.5 dBm (-0.5dBm x 31)

SW-B6 No. 6 Dial tone detection (LCR center call)

Used to set YES/NO of dial tone detection (calling LCR center).

SW-B6 No. 7, No. 8 Reserved

Set to "0".

SW-C1 No. 1, No. 2 Reading slice (Binary)

Used to determine the set value of reading density in standard/fine mode. The standard setting is " 00 " (Factory setting is " 00 ")

SW-C1 No. 3, No. 4 Reading slice (Half tone)

Used to determine the set value of reading density in half tone mode. The standard setting is " 00 " (Factory setting is " 00 ")

SW-C1 No. 5 Line density selection

Used to set the transmission mode which is automatically selected when the Resolution key is not pressed. In the copy mode, however, the fine mode is automatically selected unless the Resolution key is manually set to another mode.

SW-C1 No. 6 Reserved

Set to "0".

SW-C1 No. 7 MTF correction in half tone mode

This allows selection of MTF correction (dimness correction) in the half tone mode. When "NO" ($=1$) is selected, the whole image becomes soft and mild. Clearness of characters will be reduced. Normally set to "YES" (=0).

SW-C1 No. 8 Reserved

Set to "0".

SW-D1 No. 1 ~ No. 4 Number of rings for auto receive

When the machine is set in the auto receive mode, the number of rings before answering can be selected. It may be set from one to four rings using a binary number. Since the facsimile telephone could be used as an ordinary telephone if the handset is taken off the hook, it should be programmed to the user's choice. If the soft switch was set to 1 , direct connection is made to the facsimile. If a facsimile calling beep was heard when the handset is taken off the hook, press the START key and put the handset on the hook to have the facsimile start receiving. If it was set to 0 accidentally, receive ring is set to 1 .
NOTE: If the machine is set to answer after a large number of rings, it may not be able to receive faxes successfully. If you have difficulty receiving faxes, reduce the number of rings to a maximum of 6 .

SW-D1 No. 5 Automatic switching manual to auto receive mode

This soft switch is used to select whether the machine should switch to the auto receive mode after 5 rings in the manual receive mode or remain in the same way as SW-D1 No. 1, No. 2, No. 3 and No. 4 "0"1"0"1"(5 rings).

SW-D1 No. 6 Reserved

Set to "0".

SW-D1 No. 7, No. 8 Cl detect frequency

Detection frequency of ring signal for auto reception is set.
When set to No. 6=0, No. 7=0, frequency is set to PTT recommendation. When set to No. $6=0$, No. $7=1$, frequency is set to 11.5 Hz or more. When set to No. $6=1$, No. $7=0$, frequency is set to 13.0 Hz or more. When set to No. $6=1$, No. $7=1$, frequency is set to 20.0 Hz or more.

SW-D2 No. 1 ~ No. 3 Distinctive ringing setting (PATTERN 4 and 5 are for CANADA only)
This function allows reception of services offered by USA and Canada telephone companies in which the customer contracts with the telephone company to have up to 4 telephone numbers (USA) or 6 telephone numbers (Canada) established for one line.
Each telephone number is signalled by a different ringing pattern, and the customer can allocate each number to a specific use.
<Example of use>

	Phone Number	Intended Purpose	Ring Pattern
Ring Pattern	$555-1234$	Voice Calls	Standard
	$555-1235$	Facsimile Calls	Pattern 1
	$555-1236$	Answering Machine	Pattern 2
	$555-1237$	PC Modem	Pattern 3

<Distinctive Ringing Timing Specifications>

1) USA

DISTINCTIVE RING \rightarrow 1:RING PATTERN 1
\uparrow 2 $\rightarrow \frac{\text { 2:RING PATTERN 2 }}{\downarrow}$
5:OFF SETTING $\leftarrow 4:$ STANDARD RING $\leftarrow \frac{\downarrow: \text { RING PATTERN 3 }}{}$
2) Canada

- Ring Pattern

STANDARD has 5 ring patterns, and DISTINCTIVE has 9 patterns. Ring patterns (1)~(4) for USA, and (5) ~9) for Canada.
However, to make the setting procedure as easy as possible for the user to understand these patterns are grouped as follows:

1) RING PATTERN 1	RING PATTERN (1)	for USA
	-RING PATTERN (4)	for USA
	-RING PATTERN (5)	for Canada
2) RING PATTERN 2	TRING PATTERN (2)	for USA
	-RING PATTERN (6)	for Canada
3) RING PATTERN 3	-RING PATTERN (3)	for USA
	-RING PATTERN (7)	for Canada
4) RING PATTERN 4	RING PATTERN (8)	for Canada
5) RING PATTERN 5 6) STANDARD RING	RING PATTERN (9)	for Canada
7) OFF SETTING		

Standard	
$\begin{aligned} & \text { PARING } \begin{array}{l} \text { RIING } \\ \text { for usin } \end{array} \end{aligned}$	
$\begin{gathered} \text { RAING } \\ \text { PATTRN } 4 \\ \text { for USA } \end{gathered}$	
$\begin{aligned} & \text { PAING } \\ & \text { PATING } 5 \\ & \text { for CANADADA } \end{aligned}$	
$\begin{aligned} & \text { RING } \\ & \text { PATTNE } 6 \\ & \text { for CANADA } \end{aligned}$	
RAING PAITAN for CANADA	0.25 S 0.25 S 0.25 S $0.2 \mathrm{~S}_{0} .2 \mathrm{~S}$
$\begin{aligned} & \text { RING } \\ & \text { PaATNGN9 } \\ & \text { for CANADA } \end{aligned}$	

SW-D2 No. 4 Reserved

Set to "0".

SW-D2 No. 5 Caller ID function

Used for Caller ID function.

SW-D2 No. 6 Caller ID detect during CI off

Detection of caller ID signal is performed as follows:
0 :First CI OFF only
1:All of CI OFF

SW-D2 No. 7, No. 8 Reserved

Set to "0".
SW-D3 No. 1 ~ No. 5 CI off detection timer (0-1550ms setting by 50ms step)
Set the minimum time period of Cl signal interruption which affords to be judged as a CI OFF section with 50 ms steps.
(Example)

01110 (50ms ~ 14):
700 ms (Cl interruption>700ms:Judged as a CI OFF section) The section 1 is not judged as a CI OFF section, the Cl signal A is counted as one signal.
The section 2 is judged as a Cl OFF section, the Cl signal B is considered as the second signal.
00111 (50ms ~ 7):
350ms (Cl interruption>350ms:Judged as a CI OFF section)
The section 1 is judged as a CI OFF section, and the Cl signal A is counted as two signals.
The section 2 is judged as a CI OFF section, and the CI signal B is considered as the third signal.
SW-D3 No. 6 ~ No. 8 Reserved
Set to "0".
SW-E1 No. 1 ~ No. 8 Reserved
Set to "0".

SW-E2 No. 1 ~ No. 8 Reserved

Set to " 0 ".
SW-E3 No. 1 ~ No. 8 Reserved
Set to " 0 ".

SW-F1 No. 1, No. 2 DTMF detect time

Used to set detect time of DTMF (Dual Tone Multi Frequency) used in remote reception $(5 * *)$.

The longer the detect time is, the less the error detection is caused by noises.

SW-F1 No. 3 Protection of remote reception $(5 * *)$ detect
Used to set the function of remote reception $(5 * *)$. When set to "1", the remote reception function is disabled.

SW-F1 No. 4 Remote reception with GE telephone

(Corresponding to TEL made by GE) P. B. X.
"1": Compatible with TEL mode by GE
"0": Not compatible

- When sending $(5 \times *)$ for remote reception with a GE manufactured telephone remote reception may not take place because of special specifications in their DTMF.
To overcome this, a soft SW is provided to change the modem setting to allow for remote reception.
- If this soft SW is set to "1", other telephone sets may be adversely affected.

SW-F1 No. 5 ~ No. 8 Remote operation code figure by external TEL (0 ~ 9)
Remote operation codes can be changed from 0 through 9 . If set to greater than 9 , it defaults to 9 . The " $5 * *$ " is not changed.
Ex- $7 * *$ (Default: $5 * *$)

SW-F2 No. 1 CNG detection in STAND-BY mode

When setting to " 1 ", the CNG signal detection function during standby stops.

SW-F2 No. 2, No. 3 Number of CNG detect (AM mode)

Used for detection of CNG in 1 to 4 pulses.
SW-F2 No. 4, No. 5 Number of CNG detect (STAND-BY mode)
Used for detection of CNG in 1 to 4 pulses.

SW-F2 No. 6 ~ No. 8 Reserved

Set to "0".

SW-G1 No. 1 ~ No. 4 Quiet detect time

When an answering machine is connected, if a no sound state is detected for a certain period of time, the machine judges it as a transmission from a facsimile machine and automatically switches to the FAX mode.

SW-G1 No. 5 ~ No. 8 Quiet detect start timing

Inserts a pause before commencing quiet detection.

SW-G2 No. 1 ~ No. 8 Reserved

Set to "0".

SW-G3 No. 1, No. 2 OGM detect timer

This is used to change the OGM detection time for answering machine hook up detection.

SW-G3 No. 3, No. 4 Reserved

Set to "0".
SW-G3 No. 5, No. 6 Selection time of quiet detection
The switch which sets the time from the start of detection function to the end of the function.

SW-G3 No. 7 Choice after quiet detect

" 0 ": The reception begins when no sound is detected in A.M. mode.
"1":The DIS signal is transmitted only once when no sound is detected in A.M. mode.

SW-G3 No. 8 Reserved

Set to "0".
SW-H1 No. 1, No. 2 Busy tone detection ON/OFF time (Lower duration)
The initial value of detection is set according to electric condition.
The set value is changed according to the local switch board. (Erroneous detection of sound is reduced.)
Normally the upper limit is set to 900 msec , and the lower limit to 200 msec . If erroneous detection is caused by sound, etc., adjust the detection range.
The lower limit can be set in the range of 350 msec to 150 msec .

SW-H1 No. 3, No. 4 Busy tone detection ON/OFF time (Upper duration)
Similarly to SW-H1 No. 1, the set value can be varied.
The upper limit can be set in the range of 650 msec to 2700 msec .

SW-H1 No. 1	SW-H1 No. 2	SW-H1 No. 3	SW-H1 No. 4	Detection range
0	0	0	0	$150 \mathrm{msec} \sim 650 \mathrm{msec}$
0	0	0	1	$150 \mathrm{msec} \sim 900 \mathrm{msec}$
0	0	1	0	$150 \mathrm{msec} \sim 1500 \mathrm{msec}$
0	0	1	1	$150 \mathrm{msec} \sim 2700 \mathrm{msec}$
0	1	0	0	$200 \mathrm{msec} \sim 650 \mathrm{msec}$
0	1	0	1	$200 \mathrm{msec} \sim 900 \mathrm{msec}$
0	1	1	0	$200 \mathrm{msec} \sim 1500 \mathrm{msec}$
0	1	1	1	$200 \mathrm{msec} \sim 2700 \mathrm{msec}$
1	0	0	0	$250 \mathrm{msec} \sim 650 \mathrm{msec}$
1	0	0	1	$250 \mathrm{msec} \sim 900 \mathrm{msec}$
1	0	1	0	$250 \mathrm{msec} \sim 1500 \mathrm{msec}$
1	0	1	1	$250 \mathrm{msec} \sim 2700 \mathrm{msec}$
1	1	0	0	$350 \mathrm{msec} \sim 650 \mathrm{msec}$
1	1	0	1	$350 \mathrm{msec} \sim 900 \mathrm{msec}$
1	1	1	0	$350 \mathrm{msec} \sim 1500 \mathrm{msec}$
1	1	1	1	$350 \mathrm{msec} \sim 2700 \mathrm{msec}$

SW-H1 No. 5 Reserved

Set to "0".

SW-H1 No. 6 Busy tone detect continuation sound detect (during ICM: for internal A.M.)

Used to select detection of the continuous sound of certain frequency.

SW-H1 No. 7 Reserved

Set to "0".
SW-H1 No. 8 Busy tone detect intermittent sound detect (during ICM: for internal A.M.)
Used to select detection of the intermittent sound of certain frequency.
SW-H2 No. 1, No. 2 Busy tone detection pulse number
Used to set detection of Busy tone intermittent sounds.

SW-H2 No. 3 Fax switching when A.M. full

If the answering machine's memory (tape) is full and there is no response, the machine automatically switches to Fax reception.

SW-H2 No. 4 ~ No. 7 Reserved

Set to "0".

SW-H2 No. 8 Busy tone continuous sound detect time

Set detecting time busy tone continuous sound for 5 or 10 seconds.
SW-I1 No. 1 ~ No. 8 Reserved
Set to "0".

SW-I2 No. 1 ~ No. 8 Reserved

Set to "0".
SW-I3 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I4 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I5 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I6 No. 1 ~ No. 8 Reserved

SW-I7 No. 1 ~ No. 8 Reserved
Set to "0".

SW-J1 No. 1 Activity report print

This soft switch is used to select: whether or not to print out the activity report when the memory is full. An activity report can be printed when the following key entry command is made.
"FUNCTION", "2", "\#", "START"
After producing the activity report, all the data in the memory will be cleared.

When the switch function is set to "0" (no), the data in the memory will be deleted from the oldest as it reaches the maximum memory capacity.

SW-J1 No. 2 Total communication hours and pages print
Used to make a choice of whether the total communication time and pages are recorded in the activity report.

SW-J1 No. 3 Sender's phone number setting
Used to make a choice of whether the registered sender's phone number can be changed or not. If the switch is set to "1", new registration of the sender's phone number is disabled to prevent accidental wrong input.

SW-J1 No. 4, No. 5 Reserved

Set to "0".

SW-J1 No. 6 Summer time setting

This is used to set YES/NO of automatic clock adjustment for European Summer time.

SW-J1 No. 7, No. 8 Ringer volume

Used to adjust ringing volume.
SW-J2 No. 1, No. 2 Speaker volume (3 stages)
Used to adjust sound volume from a speaker.

SW-J2 No. 3 Polling key

If this switch is set to 1 , the last of Rapid key works as polling key.

SW-J2 No. 4, No. 5 Handset receiver volume

Used to adjust sound volume from a handset receiver volume.

SW-J2 No. 6 ~ No. 8 Reserved

Set to "0".

SW-J3 No. 1 Automatic cover sheet

The machine automatically generates a cover sheet and sends it as the last page of each transmission.

SW-J3 No. 2 ~ No. 4 Communication result printout (Transaction report)
Every communication, the result can be output. As usual, it is set to print the timer sending communication error alone. If No. 2: 0 No. 3:1 No. 4:0 are set, printing is always on (printed even if it is normally ended).

000: Error, timer and memory sending/receiving
001: Sending
010: Continuous printing
011: Not printed
100: Communication error
SW-J3 No. 5 ~ No. 8 Reserved
Set to "0".
SW-K1 No. 1 Entering DIAG mode by pressing SPEED key
A bit which is used in the production process only. When the SPEED key is pressed, the switch is changed from the stand-by state to the DIAG mode.

SW-K1 No. 2 ~ No. 8 Reserved

Set to "0".
SW-L1 No. 1 ~ No. 4 Reserved
Set to "0".

SW-L1 No. 5 Cut off mode (COPY mode)

Whether the excessive part is printed on the next recording paper or discarded is selected to copy a document which is longer than the recording paper

SW-L1 No. 6 A4 Paper enable

The use of recording paper of A 4 is enabled.

SW-L1 No. 7 LEGAL and LETTER paper enable

The use of recording paper of LEGAL and LETTER is enabled.

SW-L1 No. 82 IN 1 mode

A function to print transmitted data of two pages on one sheet.
SW-L2 No. 1, No. 2 Paper set size
At present size of the recording paper.

SW-L2 No. 3 Automatic reduce of receive

If set to 1 , it is reduced automatically when receiving.
SW-L2 No. 4 Print contrast
0: Normal
1: Light
SW-L2 No. 5 Reception reduction ratio in case of memory full
This model is designed so that the print is started according to the setting of SW-L2 No. 3 when reception of one page is completed. However, if the memory is filled with data before completion of reception of one page, the print is started with the reduction ratio which is set with this switch.

SW-L2 No. 6 ~ No. 8 Reserved
Set to "0".
SW-M1 No. 1 ~ No. 8 Reserved
Set to "0".
SW-M2 No. 1 ~ No. 8 Reserved
Set to "0".
SW-N1 No. 1 ~ No. 6 LCR short time
First time setting transmitting to the Open LCR center.
SW-N1 No. 7, No. 8 Reserved
Set to "0".
SW-N2 No. 1 ~ No. 6 LCR long time
Second time setting transmitting to the Open LCR center.
SW-N2 No. 7, No. 8 Reserved
Set to "0".

SW-N3 No. 1 LCR Time Select

Used to select LCR short time or LCR long time.
$0:$ LCR short time is selected.
1:LCR long time is selected.
SW-N3 No. 2 Temporary release of caller ID withhold
Used to do temporary release of caller ID withhold.
$0:$ Normal dialing.
1:Release of caller ID withhold before dialing.

SW-N3 No. 3 Connect Japanese center

Used to connect Japanese open LCR center.
$0:$ Connect USA open LCR center.
1:Connect Japanese open LCR center.
SW-N3 No. 4 Open LCR debug mode
Used to debug open LCR function.
$0:$ Normal mode.
1:debug mode.

SW-N3 No. 5, No. 6 Digital egualization setting (Recept for LCR V23 mode)

Line egualization when Open LCR table download is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.

SW-N3 No. 7, No. 8 Reserved
Set to "0".

[3] Troubleshooting

Refer to the following actions to troubleshoot any of the problems mentioned in 1-4.
[1] A communication error occurs.
[2] Image distortion produced.
[3] Unable to do overseas communication.
[4] Communication speed slow due to FALLBACK.

- Increase the transmission level SOFT SWITCH A4-1, 2, 3, 4, 5. May be used in case [1] [2] [3].
- Decrease the transmission level SOFT SWITCH A4-1, 2, 3, 4, 5. May be used in case [3].
- Apply line equalization SOFT SWITCH A5-1, 2. May be used in case [1] [2] [3] [4].
- Slow down the transmission speed SOFT SWITCH A2-1, 2, 3, 4. May be used in case [2] [3].
- Replace the TEL/LIU PWB. May be used in all cases.
- Replace the control PWB. May be used in all cases.
* If transmission problems still exist on the machine, use the following format and check the related matters.

* Please complete this report before calling the "TAC" hotline if problem still occurs.

[4] Error code table

1. Communication error code table

G3 Transmission

Code	Final received signal	Error Condition (Receiver side)
0	Incomplete signal frame	Cannot recognize bit stream after flag
1	NSF, DIS	Cannot recognize DCS signal by echo etc. Cannot recognize NSS signal (FIF code etc)
2	CFR	Disconnects line during reception (carrier missing etc)
3	FTT	Disconnects line by fall back
4	MCF	Disconnects line during reception of multi page Cannot recognize NSS, DCS signal in the case of mode change
5	PIP or PIN	The line is hung up without replying to telephone request from the receiving party.
6	RTN or RTP	Cannot recognize NSS, DCS signal after transmit RTN or RTP signal.
7	No signal or DCN	No response in receiver side or DCN signal received* (transmitter side)
8	-	Owing to error in some page the error could not be corrected although the specified number of error retransmissions were attempted.
11	-	Error occurred after or while reception by the remote (receiving) machine was revealed to be impossible.
12	-	Error occurred just after fallback.
13	$\quad-$	Error occurred after a response to retransmission end command was received.

G3 Reception

Code	Final received signal	Error Condition (Receiver side)
0	Incomplete signal frame	Cannot recognize bit stream after flag
1	NSS, DCS	Cannot recognize CFR or FTT signal Disconnects line during transmission (line error)
2	NSC, DTC	Cannot recognize NSS signal (FIF code etc)
3	EOP	Cannot recognize MCF, PIP, PIN, RTN, RTP signal
4	EOM	Cannot recognize MCF, PIP, PIN, RTN, RTP signal in the case of mode change
5	MPS	The line is hung up without replying to communication request.
6	PR1-Q	Cannot recognize PIP, PIN signal in the case of TALK request
7	No signal or DCN	No response in transmitter (cannot recognize DIS signal) or DCN signal received* (receiver side)
8	-	Error occurred upon completion of reception of all pages.
9	-	Error occurred when mode was changed or Transmission/Reception switching was performed.
10	-	Error occurred during partial page or physical page reception.
11	-	Error occurred after or during inquiry from the remote (transmitting) machine as to whether reception is possible or not.
12	-	Error occurred during or just after fallback.
13	-	Error occurred after the retransmission end command was received.

CHAPTER 3. MECHANISM BLOCKS

[1] General description

1. Document feed block and diagram

Fig. 1

2. Document feed operation

1) The original, which is set in the document hopper, feeds automatically when the front sensor is activated. This in turn activates the pulse motor which drives the document supply roller. The document stops when the lead edge is detected by the document sensor.
2) The lead edge of the original is fed a specified number of pulses after the lead edge of the document is detected for the reading process to begin.
3) The trailing edge of the original is fed a specific number of pulses after the trailing edge of the document deactivates the original sensor. The read process then stops and the original is discharged.
4) When the front sensor is in the OFF state (any document is not set up in the hopper guide), the drive will be stopped when the document is discharged.

3. Hopper mechanism

Fig. 2
The hopper section contains document guides that are used to adjust the hopper to the width of the original document. This ensures that the original feeds straight into the fax machine for scanning.
Document width: 148 mm to 216 mm (A5 longitudinal size to Letter longitudinal size)
NOTE: Adjust the document guide after setting up the document.

3-2. Automatic document feed

1) Use of the paper feed roller and separation rubber plate ensures error-free transport and separation of documents. The plate spring presses the document to the paper feed roller to assure smooth feeding of the document.
2) Document separation method: Separation rubber plate

Fig. 3

3-3. Documents applicable for automatic feed

	4×6 series (788mm x 1091mm x 1000 sheets)		Square meter series	
	Minimum	Maximum	Minimum	Maximum
Feeder capacity	20 sheets, max.			
Paper weight	45 kg	64.3 kg	$52 \mathrm{~g} / \mathrm{m}^{2}$	$74.3 \mathrm{~g} / \mathrm{m}^{2}$
Paper thickness (ref.)	0.06 mm	0.09 mm	0.06 mm	0.09 mm
Paper size	$128 \mathrm{~mm} \times 148 \mathrm{~mm} \sim$ (MIN. SIZE)A4 ($210 \mathrm{~mm} \times 297 \mathrm{~mm}$), Letter ($216 \mathrm{~mm} \times 279 \mathrm{~mm}$)			

NOTE: Double-side coated documents and documents on facsimile recording paper should be inserted manually. The document feed quantity may be changed according to the document thickness.
Documents corresponding to a paper weight heavier than 64.3 kg ($74.3 \mathrm{~g} /$ $\left.\mathrm{m}^{2}\right)$ and lighter than $135 \mathrm{~kg}\left(157 \mathrm{~g} / \mathrm{m}^{2}\right)$ are acceptable for manual feed.
Documents heavier than 135 kg in terms of the paper weight must be duplicated on a copier to make it operative in the facsimile.

3-4. Loading the documents

1) Make sure that the documents are of suitable size and thickness, and free from creases, folds, curls, wet glue, wet ink, clips, staples and pins.
2) Place documents face down in the hopper.
i) Adjust the document guides to the document size.
ii) Align the top edge of documents and gently place them into the hopper. The first page under the stack will be taken up by the feed roller to get ready for transmission.
NOTES: 1) Curled edge of documents, if any, must be straighten out.
3) Do not load the documents of different sizes and/or thicknesses together.

Fig. 4

3-5. Documents requiring use of copy

1) Documents smaller than $128 \mathrm{~mm} \times 148 \mathrm{~mm}$.
2) Documents thinner than the thickness of 0.06 mm .
3) Documents containing creases, folds, or curls, especially those whose surface is curled (maximum allowable curl is 5 mm).
4) Documents containing tears.
5) Carbon-backed documents. (Insert a white sheet of paper between the carbon back and the document carrier to avoid transfer of carbon to the carrier.)
6) Documents containing an easily separable writing material (e.g., those written with a lead pencil),
7) Transparent documents
8) Folded or glued documents.

4. Document release

4-1. General

To correct a jammed document or to clean the document running surface, pull the operation panel lock lever under the front center of the operation panel. To open the upper document guide, the operation panel must be opened first.

5. Optical system

(1) General view

Fig. 5

(2) Composition

The optical system is composed of the document feed mechanism, the LED lamp, the reflecting mirrors, the focusing lens, the CCD sensor, and the read process circuit.

5-1. LED Lamp/Lens

The LED lamp is used to project light to the document.
NOTE: Take care for the position of the red mark on the lens. (Top of the light-projected side)

5-2. CCD

The CCD (charge coupled device) image sensor consists of a photodiode array which converts the intensity of light reflected from the document surface into series of analog voltages which are then stored in an ana log shift register. The series of analog voltages are then converted into a digital equivalent by a black/white binary logic circuit.
(Example) Scan signal output waveform

Fig. 6

1) The minimum output from the CCD at the maximum scan width of document $(216 \mathrm{~mm})$ must be more than 50% of the peak value.
2) The peak output must be about $0.2 \sim 0.6$ under room temperature to avoid CCD saturation.

6. Recording block

(1) General view

Fig. 7

6-1. Driving

In the drive mechanism, the rotating force of the pulse motor for both transmission and reception is transmitted to the paper supply roller, the recording paper feed roller and imaging film drive gear through the pulse motor axle gear, reduction gear and planetary gear.

6-2. Recording

This equipment employs the thermal transcription system which used the thermal head imaging film.

1) Thermal head

The thermal head is composed of 2,016 heating elements in traverse line, and the resolution power is 8 dots $/ \mathrm{mm}$. The maximum speed is 10 $\mathrm{ms} / \mathrm{ine}$.

2) Structure of recording mechanism

Recording is achieved by applying a suitable pressure to the thermal head through the imaging film of the recording paper feed roller and the recording paper.
The main scanning is electronically done, and the sub-scanning is me chanically done (by sending the recording paper with the recording paper feed roller).

3) Recording paper transfer sequence

a) The recording paper stored in the RP hopper is fed with the PU roller, and the recording paper is stopped when the P-IN sensor is turned on by sensing its lead edge.
b) Hereafter, the imaging film and recording paper are transferred with the recording paper feed roller, and thermal transcription is done on the recording paper.
c) After thermal transcription, the imaging film is taken up by the roller on the take-up side, and the recording paper is discharged by the PO roller.
As basic, the density unevenness mainly results from the longitudinal misalignment of the thermal head to the heater line. Other-wise, the head is in uneven contact with the recording paper feed roller, or the imaging film is wrinkled.

The following items are described as the simplified checking method.
(1) Are the power and signal cables of the thermal head suitably treated?
(2) Does the same symptom appear even if the thermal head pres-sure spring is replaced?
(3) Is the feed roller of the recording paper concentric? (Density is uneven at intervals.)
(4) Does the same symptom appear even if the thermal head is replaced?
(5) Is the imaging film stained or wrinkled?

[2] Disassembly and assembly procedures

- This chapter mainly describes the disassembly procedures. For the assembly procedures, reverse the disassembly procedures.
- Easy and simple disassembly/assembly procedures of some parts and units are omitted. For disassembly and assembly of such parts and units, refer to the Parts List.
- The numbers in the illustration, the parts list and the flowchart in a same section are common to each other.
- To assure reliability of the product, the disassembly and the assembly procedures should be performed carefully and deliberately.

1

Operation panel unit, document guide lower and rear cover

Parts list (Fig. 1)

No.	Part name	Q'ty	No.	Part name	Q'ty
1	Mechanism unit	1	9	Hook switch lever	1
2	Operation panel unit	1	10	Document guide lower unit	1
3	Screw (3×12)	2	11	Transfer gear	1
4	Side cover	1	12	Transfer bearing	3
5	Screw (3×12)	1	13	Transfer roller	1
6	Screw (3×10)	2	14	Feed gear ass'y	1
7	Rear cabinet	1	15	Paper feed roller	1
8	Screw (3×10)	4	16	Document guide lower	1

9 9 10 1 11 1 12 13 (13) 14 1 15 1 $16)$
 (14)

2	Document guide upper	Parts list (Fig. 2)					
		No.	Part name	Q'ty	No.	Part name	Q'ty
		1	Operation panel unit	1	10	Transfer bearing	2
		2	Screw (3×10)	2	11	Transfer roller	1
		3	Document guide upper	1	12	Separate spring	1
					13	Separate plate	1
		4	Panel lock lever spring	1	14	Paper feed arm	2
		5	Panel lock lever	1	15	Paper feed spring	1
		6	Idler gear (28Z)	1	16	Separation rubber	1
		7	Idler gear (20Z)	1	17	Pinch roller spring	2
		8	Transfer gear 2	1	18	Pinch roller shaft	1
		9	Rear sheet	1	19	Pinch roller	2
					20	Document guide upper	1

Fig. 2

Fig. 3

4	Top cover and head frame unit	Parts list (Fig. 4)		
		No.	Part name	Q'ty
		1	Mechanism unit	1
		2	Top cover unit	1
		3	Screw (3×10)	5
		4	Head frame unit	1
		5	Hopper guide, right	1
		6	Hopper guide, left	1
		7	Screw (3×6)	1
		8	Pinion gear	1
		9	Hopper spring	1
		10	Top cover	1

Fig. 4

5	Head frame and thermal head	Parts list (Fig. 5)					
		No.	Part name	Q'ty	No.	Part name	Q'ty
		1	Release knob	1	11	Head spring 2	2
		2	Lock spring	1	12	Head spring 1	1
		3	Lock lever	1	13	Head frame	1
		4	Screw (3×10)	1	14	Head cable	1
		5	Pop up spring	1	15	Screw (3x6)	1
		6	Cut washer	2	16	Head earth cable	1
		7	Film guide shaft	2	17	Head guide, right	1
		8	Head guide sheet	1	18	Screw (3×6)	1
		9	Thermal head unit	1	19	Head guide, left	1
		10	Head spring B	2	20	Thermal head	1

Fig. 5

6	Paper out guide	Parts list (Fig. 6)		
		No.	Part name	Q'ty
		1	Mechanism unit	1
		2	Screw (3x10)	2
		3	Paper out guide unit	1
		4	Idler gear A	1
		5	Take-up gear	1
		6	Slip gear ass'y	1
		7	Cut washer	1
		8	Film shaft C	1
		9	PO pinch roller spring	2
		10	PO pinch roller	2
		11	Paper out guide	1

Fig. 6

Fig. 7

No.	Part name	Q'ty
1	Mechanism unit	1
2	Screw (3×10)	1
3	ROM cover	1
4	Memory cover	1
5	Screw (3×10)	1
6	Drive unit	1
7	Screw (3×10)	3
8	Main frame unit	1
9	Optical unit	1

Fig. 8

Parts list (Fig. 9)

No.	Part name	Q'ty	No.	Part name	Q'ty	No.	Part name	Q'ty
1	Reduction gear A	1	11	PU roller ass'y	1	22	Slip spring	1
2	PU gear	1	12	PO roller ass'y	1	23	Hold down plate B	1
3	Platen bearing	1	13	U turn guide	1	24	Back tension stopper	1
4	Platen gear	1	14	Sensor lever spring	1	25	Separate plate spring	1
5	Platen bearing	1	15	Film sensor lever	1	26	Separate sheet	1
6	Platen roller	1	16	Sensor lever spring	1	27	Separate plate sheet	1
7	PO gear	1	17	P-IN sensor lever	1	28	Separate plate	1
8	Screw (3×10)	4	18	Pop up spring	1	29	Guide sheet, left	1
9	Film guide shaft B	1	19	Cover switch lever	1	30	Guide sheet, right	1
10	PU roller shaft	1	20	Back tension gear	1	31	PO gear cushion	1

Fig. 9

10	Drive unit frame	Parts list (Fig. 10)					
		No.	Part name	Q'ty	No.	Part name	Q'ty
		1	Drive unit	1	10	Planet lever A ass'y	1
		2	Reduction gear B	1	11	Reduction gear C	2
		3	Planet lever B ass'y	1	12	Cam switch ass'y	1
		4	Idler gear A	1	13	Screw (3×10)	2
		5	Idler gear C	1	14	Motor	1
		6	Reduction gear A	1	15	Motor heat sink	1
		7	Planet lever C ass'y	1	16	Cushion	1
		8	Cam hold spring	1	17	Band	2
		9	Cam A	1	18	Drive unit frame	1

Fig. 10

11	Optical frame	Parts list (Fig. 11)					
		No.	Part name	Q'ty	No.	Part name	Q'ty
		1	Optical unit	1	7	Reader glass	1
		2	Screw	2	8	LED	1
		3	CCD PWB unit	1	9	Shading sheet 3	2
		4	Shading sheet	1	10	Mirror 3	1
		5	Lens holding spring	1	11	Mirror 1	1
		6	Lens	1	12	Mirror 2	1
					13	Optical frame	1

(13)

Fig. 11

12	PWB section	Parts list (Fig. 12)					
		No.	Part name	Q'ty	No.	Part name	Q'ty
		1	Mechanism unit	1	7	Connector	2
		2	Screw (3×6)	1	8	Control PWB unit	1
		3	TEL/LIU ARG cable	1	9	TEL/LIU PWB unit	1
		4	Screw (4×6)	1	10	Power supply PWB unit	1
		5	AC cord	1	11	Earth plate	1
		6	Screw (3×10)	6	12	Jack sheet	1

17	
(2)	7
1	1
3	8
4	9
1	9
5	10
(6)	11
	12
	12

Fig. 12

CHAPTER 4. DIAGRAMS

[2] Wiring diagram

CHAPTER 5. CIRCUIT DESCRIPTION

[1] Circuit description

1. General description

The compact design of the control PWB is obtained by using CONEXANT fax engine in the main control section and high density printing of surface mounting parts. Each PWB is independent according to its function as shown in Fig. 1.

2. PWB configuration

Fig. 1

1) Control PWB

The control PWB controls peripheral PWBs, mechanical parts, transmission, and performs overall control of the unit.
This machine employs a 1 -chip modem (SCE114) which is in-stalled on the control PWB.

2) TEL/LIU PWB

This PWB controls connection of the telephone line to the unit.

3) Power supply PWB

This PWB provides voltages of +5 V and +24 V to the other PWBs.

4) Panel PWB

The panel PWB allows input of the operation keys.

3. Operational description

Operational descriptions are given below:

- Transmission operation

When a document is loaded in standby mode, the state of the document sensor is sensed via the 1 chip fax engine (SCE114). If the sensor signal was on, the motor is started to bring the document into the standby position. With depression of the START key in the offhook state, transmission takes place.
Then, the procedure is sent out from the modem and the motor is rotated to move the document down to the scan line. In the scan processor, the signal scanned by the CCD is sent to the internal image processor and the AD converter to convert the analog signal into binary data. This binary data is transferred from the scan processor to the image buffer within the RAM and encoded and stored in the transmit buffer of the RAM. The data is then converted from parallel to serial form by the modem where the serial data is modulated and sent onto the line.

- Receive operation

There are two ways of starting reception, manual and automatic. Depression of the START key in the off-hook mode in the case of manual receive mode, or CI signal detection by the LIU in the automatic receive mode.
First, the SCE114 controls the procedure signals from the modem to be ready to receive data. When the program goes into phase C, the serial data from the modem is converted to parallel form in the modem interface of the 1 chip fax engine (SCE114) which is stored in the receive buffer of the RAM. The data in the receive buffer is decoded software-wise to reproduce it as binary image data in the image buffer. The data is DMA transferred to the recording processor within the SCE114 which is then converted from parallel to serial form to be sent to the thermal head. The data is printed line by line by the SCE114 which is assigned to control the motor rotation and strobe signal.

- Copy operation

To make a copy on this facsimile, the COPY key is pressed when the machine is in stand-by with a document on the document table and the telephone set is in the on-hook state.
First, depression of the COPY key advances the document to the scan line. Similar to the transmitting operation, the image signal from the CCD is converted to a binary signal in the DMA mode via the 1 chip fax engine (SCE114) which is then sent to the image buffer of the RAM. Next, the data is transferred to the recording processor in the DMA mode to send the image data to the thermal head which is printed line by line. The copying takes place as the operation is repeated.

5) LCD PWB

This PWB controls the LCD display.

6) CCD PWB

This PWB controls the pickup optical device.

[2] Circuit description of control PWB

1. General description

Fig. 2 shows the functional blocks of the control PWB, which is composed of 5 blocks.

Fig. 2 Control PWB functional block diagram

2. Description of each block

(1) Main control block

The main control block is composed of CONEXANT 1 chip fax engine (SCE114), ROM (2Mbit), SRAM (256kbit), DRAM (4Mbit) and Integrated Analog (20415).
Devices are connected to the bus to control the whole unit.

1) SCE114 (IC9) : pin-176 QFP (FAX CONTROLLER)
2) 20415 (IC13) : pin-32 QFP (INTEGRATED ANALOG)

The FAX ENGINE Integrated Facsimile Controllers.
SCE114, contains an internal 8 bit microprocessor with an external 2 Mbyte address space and dedicated circuitry optimized for facsimile image processing and facsimile machine control and monitoring.

3) 27L2000 (IC4): pin-32 DIP (ROM)

ROM of 2Mbit equipped with software for the main CPU.
4) W24258S-70LE (IC8): pin-28 SOP (SRAM)

Line memory for the main CPU system RAM area and coding/decoding process. Used as the transmission buffer.
Memory of recorded data such as daily report and auto dials. When the power is turned off, this memory is backed up by the lithium battery.
5) MSM51V4800E (IC5): pin-28 SOJ (DRAM)

Image memory for recording process.

- Memory for recording pixel data without paper.

Fig. 3
$5-2$

UX-510UA
FO-1470U
SCE114 (IC9) Terminal descriptions

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin List	I/O	Input Type	Output Type	Pin Description
1	VSS	-	-	-	Digital ground.
2	D[3]	I/O	Tu	13Xs	CPU data bus.
3	D[2]	1/O	Tu	13Xs	CPU data bus.
4	D[1]	1/O	Tu	13Xs	CPU data bus.
5	D[0]	1/O	Tu	13Xs	CPU data bus.
6	A[23]/EYEXY	I/O	Tu	13Xs	CPU address bus.
7	A[22]/EYESYNC	1/O	Tu	13Xs	CPU address bus.
8	A[21]/EYECLK	I/O	Tu	13Xs	CPU address bus.
9	A[20]	1/O	Tu	13Xs	CPU address bus.
10	A[19]	1/O	Tu	13Xs	CPU address bus.
11	A[18]	1/O	Tu	13Xs	CPU address bus.
12	VDD	-	-	-	Digital power.
13	A[17]	1/O	Tu	13Xs	CPU address bus.
14	A[16]	1/O	Tu	13Xs	CPU address bus.
15	A[15]	1/O	Tu	13Xs	CPU address bus.
16	A[14]	1/O	Tu	13Xs	CPU address bus.
17	VSS	-	-	-	Digital ground.
18	A[13]	I/O	Tu	13Xs	CPU address bus.
19	A[12]	1/0	Tu	13Xs	CPU address bus.
20	A[11]	1/0	Tu	13Xs	CPU address bus.
21	A[10]	1/O	Tu	13Xs	CPU address bus.
22	A[9]	1/O	Tu	13Xs	CPU address bus.
23	A[8]	1/O	Tu	13Xs	CPU address bus.
24	A[7]	1/O	Tu	13Xs	CPU address bus.
25	A[6]	1/O	Tu	13Xs	CPU address bus.
26	A[5]	1/O	Tu	13Xs	CPU address bus.
27	A[4]	1/O	Tu	13Xs	CPU address bus.
28	VDD	-	-	-	Digital power.
29	A[3]	1/O	Tu	13Xs	CPU address bus.
30	A[2]	1/O	Tu	13Xs	CPU address bus.
31	A[1]	I/O	Tu	13Xs	CPU address bus.
32	A[0]	1/O	Tu	13Xs	CPU address bus.
33	GPIO[20]/ALTTONE	1/O	Hu	13Xs	GPIO[20] or ALTTONE.
34	NC	-	-	-	No connection.
35	NC	-	-	-	No connection.
36	NC	-	-	-	No connection.
37	NC	-	-	-	No connection.
38	NC	-	-	-	No connection.
39	GPIO[19]/RDY/SEROUT	1/O	Hu	13Xs	GPIO[19], bus ready or serial port data output for autobaud detection.
40	GPIO[11]/BE/SERINP	1/O	Hu	13Xs	GPIO[11], bus enable or serial port data input for autobaud detection.
41	VSS	-	-	-	Digital ground.
42	PCLK/DMAACK	0	-	3XC	Thermal Print Head (TPH) clock or ext. DMA acknowledge.
43	PDAT	0	-	2XC	Serial printing data (to TPH).
44	PLAT	0	-	3XC	TPH data latch.
45	STRB[3]	0	-	1XC	Strobe signal for TPH.
46	STRB[2]	0	-	1XC	Strobe signal for TPH.
47	STRB[1]	0	-	1XC	Strobe signal for TPH.
48	STRB[0]	0	-	1XC	Strobe signal for TPH.
49	STRBPOL/DMAREQ	1	H	-	Sets strobe polarity active high/low or ext. DMA request.
50	VDD	-	-	-	Digital power.
51	GPIO[17]	1/O	Hu	13Xs	GPIO[17].
52	GPIO[16]/IRQ[8]	1/O	Hu	13Xs	GPIO[16] or ext. interrupt with priority 8.
53	GPIO[15]/CS[5]n	I/O	Hu	13Xs	GPIO[15] or I/O chip select 5.
54	GPIO[14]/CS[4]n	1/0	Hu	13Xs	GPIO[14] or I/O chip select 4.
55	GPIO[13]/CS[3]n	1/O	Hu	13Xs	GPIO[13] or I/O chip select 3.
56	GPIO[12]/CS[2]n	1/O	Hu	13Xs	GPIO[12] or I/O chip select 2.
57	GPIO[4]/CPCIN	1/O	Hu	13Xs	GPIO[4] or Call Party Control input.
58	VSS	-	-	-	Digital ground.
59	LEDCTL/GPO[16]	0	-	4XC	Indicates the OPO[7:0] outputs are for LEDs or GPO[16].
60	NC	-	-	-	No connection.
61	LEDCS/GPO[17]	0	-	1XC	LCD Chip select or GPO[17].
62	GPIO[7]/SSRXD2	1/O	Hu	13Xs	GPIO[7] or SSIF2 receive data.
63	GPIO[6]/SSTXD2	I/O	Hu	13Xs	GPIO[6] or SSIF2 transmit data.

SCE114 (IC9) Terminal descriptions

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin List	I/O	Input Type	Output Type	Pin Description
64	GPIO[5]/SSCLK2	I/O	Hu	13Xs	GPIO[5] or SSIF2 clock.
65	GPIO[10]/SSSTAT2	I/O	Hu	13Xs	GPIO[10] or SSIF2 status.
66	VDRAM	-	-	-	DRAM battery power.
67	RASn	0	-	13Xs	(Batt. Pwr.) DRAM row address select.
68	CAS[1]n	0	-	13Xs	(Batt. Pwr.) DRAM column address select.
69	CAS[0]n	0	-	13Xs	(Batt. Pwr.) DRAM column address select.
70	DWRn	0	-	13Xs	(Batt. Pwr.) DRAM write.
71	VBAT	-	-	-	Battery power.
72	XIN	1	Osc1	-	(Batt. Pwr.) 32.768kHz Crystal Oscillator input.
73	XOUT	0	-	Osc1	(Batt. Pwr.) 32.768 kHz Crystal Oscillator output.
74	WRPROTn	0	-	1XC	(Batt. Pwr.) Write protect during loss of VDD power.
75	CSOn	0	-	13Xs	(Battery Powered) SRAM Chip select.
76	TEST[1]	I	Hd	-	(Batt. Pwr.) Test mode.
77	TEST[0]	1	Hd	-	(Batt. Pwr.) Test mode.
78	BATRSTn	1	H	-	(Batt. Pwr.) Battery power reset input.
79	INTPWRDWNEn	1	H	-	(Batt. Pwr.) Internal power down select signal.
80	PWRDWNn	I/O	H	13Xs	(Batt. Pwr.) Indicates a prime power loss from ext./internal source (mode dependent).
81	NC	I	Analog	-	No Connection.
82	ADGA	-	VADG	-	A/D analog ground.
83	VREFn/CLREF	I	VR-	-	Negative reference voltage for Video A/D.
84	VIN	I	VA	-	Analog Video A/D input.
85	ADGA	-	VADG	-	A/D analog ground.
86	ADVA	-	VADV	-	A/D analog power.
87	ADXG	-	VXG	-	A/D internal ground.
88	VREFp	I	VR	-	Positive reference voltage for Video A/D.
89	IVREFn	I	VR-	-	Internal negative reference voltage for A/D.
90	IVREFp	I	VR+	-	Internal positive reference voltage for A/D.
91	VDD	-	-	-	Digital power.
92	THADI	I	Analog	-	Analog Thermal A/D input.
93	OPO[7]/GPO[15]	0	-	13Xs	Keyboard LED strobe 7 or GPO[15].
94	OPO[6]/GPO[14]	0	-	13Xs	Keyboard LED strobe 6 or GPO[14].
95	OPO[5]/GPO[13]	0	-	13Xs	Keyboard LED strobe 5 or GPO[13].
96	OPO[4]/GPO[12]/SSTXD1	0	-	13Xs	Keyboard LED strobe 4 or GPO[12] or transmit data for SSIF1.
97	OPO[3]/GPO[11]	0	-	13Xs	Keyboard LED strobe 3 or GPO[11].
98	OPO[2]/GPO[10]/RINGER	OZ	-	13Xs	Keyboard LED strobe 2 or GPO[10] or ringer.
99	OPO[1]/GPO[9]/PMPWRCTRL	0	-	13Xs	Keyboard LED strobe 1 or GPO[9] or Printer motor power control.
100	OPO[0]/GPO[8]SMPWRCTRL	0	-	13Xs	Keyboard LED strobe 0 or GPO[8] or Stepper motor power control.
101	OPI[3]/GPIO[24]	1/0	Hu	13Xs	Keyboard return 3 or GPIO[24].
102	OPI[2]/GPIO[23]/SSCLK1	I/O	Hu	13Xs	Keyboard return 2 or GPIO[23] or SSIF1 clock.
103	OPI[1]/GPIO[22]/SSSTAT1	I/O	Hu	13Xs	Keyboard return 1 or GPIO[22] or SSIF1 status.
104	OPI[0]/GPIO[21]/SSRXD1	I/O	Hu	13Xs	Keyboard return 0 or GPIO[21] or SSIF1 receive data.
105	RESETn	I/O	Hu	2XC	Chip reset.
106	VSS	-	-	-	Digital ground.
107	GPIO[18]/IRQ[9]n	I/O	Hu	13Xs	GPIO[18] or ext. interrupt priority 9.
108	GPIO[3]/SASCLK	1/O	Hu	13Xs	GPIO[3] or SASIF clock.
109	GPIO[2]/SASRXD	I/O	Hu	13Xs	GPIO[2] or SASIF receive data.
110	GPIO[1]/SASTXD	I/O	Hu	13Xs	GPIO[1] or SASIF transmit data.
111	GPIO[9]/FRDn	I/O	Hu	13Xs	GPIO[9] or flash read enable signal for NAND-type flash memory.
112	GPIO[8]/FWRn	I/O	Hu	13Xs	GPIO[8] or flash write enable signal for NAND-type flash memory.
113	FCSn[2]/VIDCTL[1]/GPO[22]	0	-	13Xs	Flash memory chip select 2 or video control signal 1 or GPO[22].
114	FCSn[1]/VIDCTL[0]/GPO[23]	0	-	13Xs	Flash memory chip select 1 or video control signal 1 or GPO[23].
115	CLK2/GPO[24]	0	-	13Xs	Scanner reset gate control (or clock for CIS scanner) or GPO[24].
116	CLK1n/GPO[25]	0	-	13Xs	Scanner clock-inverted or GPO[25].
117	CLK1	0	-	2XC	Scanner clock.
118	START	0	-	2XC	Scanner shift gate control.
119	VDD	-	-	-	Digital power.
120	TONE	0	-	Analog	Analog tone output.
121	VSS	-	-	-	Digitai ground.
122	GPIO[25]/STROBEN	I/O	Hu	13Xs	GPIO[25] or P1284 input from host.
123	GPIO[26]/AUTOFDN	I/O	Hu	13Xs	GPIO[26] or P1284 input from host.
124	GPIO[27]/INITN	I/O	Hu	13Xs	GPIO[27] or P1284 input from host.
125	GPIO[28]/SLCTINN	I/O	Hu	13Xs	GPIO[28] or P1284 input from host.
126	GPIO[26]/ACKN	0	-	13Xs	GPIO[26] or P1284 returned status to host.

SCE114 (IC9) Terminal descriptions

Pin No.	Pin List	I/O	Input Type	Output Type	Pin Description
127	GPO[27]/BUSY	O	-	13Xs	GPO[27] or P1284 returned status to host.
128	GPO[28]/PERROR	0	-	13Xs	GPO[28] or P1284 returned status to host.
129	GPO[29]/SLCTOUT	0	-	13Xs	GPO[29] or P1284 returned status to host.
130	GPO[30]/FAULTN	O	-	13Xs	GPO[30] or P1284 returned status to host.
131	GPIO[29]/PIOD[0]	I/O	Hu	13Xs	GPO[29] or P1284 data or address driven by asic or host (mode dependent).
132	GPIO[30]/PIOD[1]	I/O	Hu	13Xs	GPO[30] or P1284 data or address driven by asic or host (mode dependent).
133	GPIO[31]/PIOD[2]	I/O	Hu	13Xs	GPO[31] or P1284 data or address driven by asic or host (mode dependent).
134	GPIO[32]/PIOD[3]	I/O	Hu	13Xs	GPO[32] or P1284 data or address driven by asic or host (mode dependent).
135	GPIO[33]/PIOD[4]	I/O	Hu	13Xs	GPO[33] or P1284 data or address driven by asic or host (mode dependent).
136	GPIO[34]/PIOD[5]	I/O	Hu	13Xs	GPO[34] or P1284 data or address driven by asic or host (mode dependent).
137	GPIO[35]/PIOD[6]	I/O	Hu	13Xs	GPO[35] or P1284 data or address driven by asic or host (mode dependent).
138	GPIO[36]/PIOD[7]	I/O	Hu	13Xs	GPO[36] or P1284 data or address driven by asic or host (mode dependent).
139	VDD	-	-	-	Digitai power.
140	GPIO[0]/SR4IN	I/O	Hu	13Xs	GPIO[0] or from secondary EXTIA SOUT to DSP.
141	GPO[31]/SR3OUT	O	-	13Xs	GPO[31] or a signal to the secondary ext. IA (SIN pin) from the DSP.
142	GPIO[37]/IRQ15n	I/O	Hu	13Xs	GPIO[37] or a signal from the ext. IA to a DSP status register.
143	IARESET	\bigcirc	-	13Xs	A reset from the DSP to the ext. IA (POR pin).
144	IACLK/DSPCSn	O	-	13Xs	A signal from the DSP to the ext. IA (MCLK pin) or ext. modem chip select.
145	IA1CLK	I/O	H	13Xs	A signal from the ext. IA (ICLK pin) to the DSP.
146	SR3IN/DSPIRGn	I	H	13Xs	A signal from the primary ext. IA (SOUT pin) to the DSP or ext. modem interrupt input.
147	SR4OUT	O	-	13Xs	A signal to the primary ext. IA (SIN pin) from the DSP.
148	SR1IO	I/O	H	13Xs	A signal to the ext. IA (CTRL1 pin) from the DSP.
149	SA1CLK	I/O	H	13Xs	A signal from the ext. IA (FSYNC pin) to the DSP.
150	VSSPLL	-	-	-	Ground for PLL.
151	TSTCLK	O	-	13Xs	Test clock, used to synchronize ext. logic.
152	DEBUGn	1	Hu	-	External non-maskable input (NMI).
153	RDn	\bigcirc	-	13Xs	Read strobe.
154	WRn	O	-	13Xs	Write strobe.
155	SYNC/GPO[20]	I/O	Hu	13Xs	Indicates a CPU op code fetch cycle or GPO[20].
156	ROMCSn	\bigcirc	-	13Xs	ROM chip select.
157	CS1n/GPO[21]	O	-	13Xs	I/O chip select or GPO[21].
158	VSS	-	-	-	Digital ground.
159	SXIN	1	OSC0	-	32.256 MHz crystal oscillator input.
160	SXOUT	O	-	OSC0	32.256 MHz crystal oscillator output.
161	VDD	-	-	-	Digital power.
162	PM[3]/GPO[3]	0	-	13Xs	Programmable print motor control pin or GPO[3].
163	PM[2]/GPO[2]	0	-	13Xs	Programmable print motor control pin or GPO[2].
164	PM[1]/GPO[1]	\bigcirc	-	13Xs	Programmable print motor control pin or GPO[1].
165	PM[0]/GPO[0]	\bigcirc	-	13Xs	Programmable print motor control pin or GPO[0].
166	SM[3]/GPO[7]	\bigcirc	-	13Xs	Programmable scan motor control pin or GPO[7].
167	SM[2]/GPO[6]	\bigcirc	-	13Xs	Programmable scan motor control pin or GPO[6].
168	SM[1]/GPO[5]	\bigcirc	-	13Xs	Programmable scan motor control pin or GPO[5].
169	SM[0]/GPO[4]	O	-	13Xs	Programmable scan motor control pin or GPO[4].
170	REGDMA/GPO[18]/CLKConfig[0]	O	-	13Xs	Register select cycle/dma cycle or GPO[18] and sxin clock divider config. during reset.
171	WAITn/GPO[19]/CLKConfig[1]	I/O	Hu	13Xs	Wait state/halt state indication or GPO[19] and sxin lock divider config. during reset.
172	VDDPLL	-	-	-	Power for PLL.
173	D[7]	I/O	Tu	13Xs	CPU data bus.
174	D[6]	I/O	Tu	13Xs	CPU data bus.
175	D[5]	I/O	Tu	13Xs	CPU data bus.
176	D[4]	I/O	Tu	13Xs	CPU data bus.

(2) Panel control block

The following controls are performed by the SCE114.

- Operation panel key scanning
- Operation panel LCD display

(3) Mechanism/recording control block

- Recording control block diagram (1)

Fig. 4

(4) Modem (SCE114/20415) block

INTRODUCTION

The CONEXANT SCE114 modem is a synchronous 14400 bits per second (bps) half-duplex modem with error detection and DTMF reception. It has low power consumption and requires +5 V and +3.3 V DC power supply.
The modem can operate over the public switched telephone network (PSTN) through line terminations provided by a data access arrangement (DAA).
The SCE114 is designed for use in Group 3 facsimile machines.
The modem satisfies the requirements specified in ITU-T recommendations V.17, V.29, V. 27 ter, V. 21 Channel 2 and T.4, and meets the binary signaling requirements of T. 30 .
The modem can operate at $14400,12000,9600,7200,4800,2400$, or 300 bps , and also includes the V. 27 ter short training sequence option. The modem can also perform HDLC framing according to T. 30 at 9600 , $7200,4800,2400$, or 300 bps .
The modem features a programmable DTMF receiver and three programmable tone detectors which operate concurrently with the V. 21 channel 2 receiver.
The voice mode allows the host computer to efficiently transmit and receive audio signals and messages.

Fig. 5

FEATURES

- Group 3 facsimile transmission/reception
- ITU-T V.17, V.33, V.29, V. 27 ter, T.30, V. 21 Channel 2, T. 4
- ITU-T V. 17 and V. 27 ter short train
- HDLC framing at all speeds
- Receive dynamic range: 0 dBm to -43 dBm
- Automatic adaptive equalization
- Fixed and programmable digital compromise equalization
- DTMF detect and tone detect
- ITU-T V. 21 Channel 2 FSK 7E Flag Detect
- Ring detector
- Programmable transmits level
- Programmable single/dual tone transmission
- V. 23 and Type I Caller ID
- Full-duplex modes:

TX $=75 \mathrm{bps}$. RX $=1200 \mathrm{bps}$
$T X=1200 \mathrm{bps} . \mathrm{RX}=75 \mathrm{bps}$

- Half-duplex mode:
$T X=R X=1200 \mathrm{bps}$
- Serial and parallel data modes
- Programmable parallel data mode
- 5, 6, 7 or 8 data bits
- 1 or 2 Stop bits
- Mark, Space, Even, or Odd Parity
- Break function
- Transmitter squelch
- Compromise equalizer
- Programmable interface memory interrupt
- Eight General Purpose Input (GPI) and eight General Purpose Output (GPO) pins for host assignment
- DTE interface: two alternate ports
- Selectable microprocessor bus (6500 or 8085)
- ITU-T V. 24 (EIA/TIA-232-E compatible) interface
- TTL and CMOS compatible
- $3.3 \mathrm{~V} / 5 \mathrm{~V}$ operation
- Power consumption
- Operating Mode: 200 mW (Basic), 275 mW (-V option). 300 mW (-VS option)
- Sleep Mode: 1 ma (Basic. -V option and -VS option)

[3] Circuit description of TEL/LIU PWB

(1) TEL/LIU block operational description

Fig. 6

2) Circuit description

The TEL/LIU PWB is composed of the following 7 blocks.

1. Speech circuit section
2. Dial transmission section
3. Speaker amplifier section
4. Ringer circuit section
5. Externally connected TEL OFF HOOK detection circuit
6. Cl detection circuit
7. Signal/DTMF transmission level \& receiving level

3) Block description

1. Speech circuit section

- The receiver volume is an electronic volume type, this model is switched in 3 steps.

2. Dial transmission section

- D.P. transmission: The CML relay is turned on and off for control in the DP calling system. (Refer to the attached sheet.)
- DTM transmission: It is formed in the modem, and is output.

3. Speaker amplifier section

- Ringer volume :It is controlled by the combination of the attenuator value of the LINE DRIVER in the modem and the ringer sending level sent from the modem.
- Speaker volume :It is controlled by the attenuator value of the LINE DRIVER in the modem.

4. Ringer circuit section

- The ringer sound is formed in the tone of modem when Cl signal is detected. The amplifier circuit drives the speaker of the main body.

5. Externally connected TEL OFF HOOK detection circuit section

- The circuit current detection is turned on together with OFF HOOK of main body or OFF HOOK of externally connected TEL. ON of CML OFF ($\overline{\mathrm{HS}}=\mathrm{L}$) is judged as OFF HOOK of externally connected TEL.

6. Cl detection circuit

- Cl is detected by the photo coupler which is integrated in series in the primary side TEL circuit well proven in the existing unit.

7. Signal/DTMF transmission level \& receiving level

- Signal transmission level setting: ATT -10 dB Circuit output:-12 dBm.
- DTMF transmission level setting: HF -3.5 dBm LF -5.0 dBm Thus, set the level.

4) Signal selection

The following signals are used to control the transmission line of TEL/ FAX signal. For details, refer to the signal selector matrix table.
[Control signals from output port]

Signal Name	Description				
CML (The circuit is located in the TEL/LIU PWB.)	Line connecting relay and DP generating relay H: Line make L: Line break				
SP MUTE (The circuit is located in the TEL/LIU PWB.)	Speaker tone mute control signal H: Muting (Power down mode) L: Muting cancel (Normal operation)				
TEL MUTE	Handset reception mute control signal H: Muting L: Muting cancel				
RCVOL DTMFMUTE (The circuit is located in the control PWB.)	Handset receiver volume control signal				
	Volume	High	Middle	Low	DTMF sending
	RCVOL	L	H	L	L
	DTMFMUTE	L	L	H	H
	Note: The DTMF sending listed above is DTMF signal sending in the handset OFF-HOOK mode.				

VOLUME SETTING		LINEOUT A		RCVOL	DTME MUTE
		(HIGH)	(LOW)		
Receiver volume setting	Low			0	1
	High			0	0
	Middle			1	0
DTMF Transmission volume setting (Receiver)	Fixed			0	1
Key buzzer volume setting	Fixed				
Speaker volume setting	Low	1	1		
	Middle	1	0		
	High	0	1		
Ringer volume setting	Low	1	1		
	Middle	1	0		
	High	0	1		
DTMF speaker volume setting	Low	1	1		
	Middle	1	0		
	High	0	1		

[Signals for status recognition according to input signals]

Signal Name	Function
$\overline{\mathrm{RHS}}$	$\mathrm{H}:$ The handset is in the on-hook state. L: The handset is in the off-hook state.
Cl	Incoming call (CI) detection signal
DRSNS	H: Door open. L: Door close.

No.	Signal Name (CNLIUA)	No.	Signal Name (CNLIUA)
1	PE1	8	TXOUT
2	TEL OUT	9	RXIN
3	TEL IN	10	$\overline{\text { RHS }}$
4	TEL MUTE	11	$\overline{\text { DOOR SW }}$
5	CI	12	+5 V
6	HS	13	DG
7	CML	14	+24 V

[Other signals]

Signal Name	Function
TEL IN	Receiving signal from line or modem
TEL OUT	Transfer signal to line
SPOUT	Speaker output signal
TXOUT	Transmission (DTMF) analog signal output from modem
RXIN	Reception (DTMF, others) analog signal input into modem

(Example: TEL speaking)

Fig. 7

[4] Circuit description of power supply PWB

1. Block diagram

Fig. 8

2-1. Noise filter circuit

The input noise filter section is composed of L1 and C1, C15, which reduces normal mode noise from the AC line and common mode noise to the AC line.

2-2. Rectifying/smoothing circuit

The AC input voltage is rectified by diode stack DS1 and smoothed by capacitor C 2 to supply DC voltage to the switching circuit section.

2-3. Switching circuit

This circuit includes MOS FET Q1 and the gate drive circuit, and components around Q1.
In this circuit, the DC voltage supplied from the rectifying/smoothing section is converted into high frequency pulses by ON/OFF repetition of Q1.

[5] Circuit description of CCD PWB

The CCD board picks up optical information from the document, converts it into an electrical (analog) signal and transfers it to the control board.

(1) Block diagram

Fig. 9

2-4. Control circuit

This circuit controls output voltage of +24 V by adjusting ON period of Q1, looking at signal from photo coupler PC1.
In this operation IC1 takes charge of important part.
The over current protection is performed by bringing Q1 to OFF state through detection of voltage of T1 subwiding.
The over voltage protection is performed by operating the over current protection circuit through detection of zener diode ZD4 and short-circuiting of load.

2-5. +5V circuit

DC voltage supplied by rectifying the output of transformer T1 with diode D8 is stabilized by 3-terminal regulator IC1.

(2) Description of blocks

1. CCD

The TCD1208AP is a highly sensitive charged coupled image sensor that consists of 2160 picture elements.
Receiving four drive signal ($\varnothing \mathrm{T}, \varnothing 2, \varnothing 1, \varnothing \mathrm{R}$) from the control board, the transferred photoelectric analog signal OS is impedance converted, and the signal VO , is supplied to the control board.

2. Waveforms

1. $\varnothing 1, \varnothing 2(=\overline{\varnothing 1})$ signals within the control board.

2. OS ø

Fig. 10

CHAPTER 6. CIRCUIT SCHEMATICS AND PARTS LAYOUT

Modem block
$\stackrel{0}{ल}$

 -

Control PWB parts layout (Top side)

Control PWB parts layout (Bottom side)

TEL/LIU PWB parts layout (Bottom side)

Power supply PWB parts layout (Top side)

Power supply PWB parts layout (Bottom side)

[4] CCD PWB circuit

CCD PWB parts layout

CHAPTER 7. OPERATION FLOWCHART

[1] Protocol

[2] Power on sequence

CHAPTER 8. OTHERS

[1] Service tools

1. List

NO.	PARTS CODE		DESCRIPTION	QRICE
1	C P W B S 2893 S C 02 2	Extension board unit		1
2	U K O G M 2 057 S C Z Z	Optical adjustment jig	BZ	

Extension board unit

NOTE(*1): Mount connectors to CNTH1 and CNTH2 in the reverse direction against silk print of PWB.

NO.	PARTS CODE	DESCRIPTION	Q'TY	PRICE RANK
1	QCNW-4723SCZZ	CABLE [CNPN2]	1	AL
2	CCNW-4759SC01	CABLE [CNTH2]	1	AX
3	QCNW-4725SCZZ	CABLE [CNCCD2]	1	AH
4	QCNW-4726SCZZ	CABLE [CNMT2]	1	AH
5	QCNW-4727SCZZ	CABLE [CNLED2]	1	AF
6	QCNW-4728SCZZ	CABLE [CNSP2]	1	AF
7	QCNW-4729SCZZ	CABLE [CNCS2]	1	AF
8	QCNW-4730SCZZ	CABLE [CNSNS]	1	AH
9	QCNW-4731SCZZ	CABLE [CNPH2]	1	AN
10	QCNW-4732SCZZ	CABLE [CNBZ2]	1	AH
11	QCNCM2401SC0B	CONNECTOR [CNSP1, CNSP2]	2	AA
12	QCNCM2442SC0B	CONNECTOR [CNCS1, CNCS2]	2	AB
13	QCNCM7014SC0B	CONNECTOR [CNLED1, CNLED2]	2	AD
14	QCNCM7014SC0E	CONNECTOR [CNSES]	1	AB
15	QCNCM7014SC0F	CONNECTOR [CNMT1, CNMT2]	2	AB
16	QCNCM7014SC0G	CONNECTOR [CNCCD1, CNCCD2]	2	AB
17	QCNCM7014SC1E	CONNECTOR [CNPN1, CNPN2]	2	AC
18	QCNCM7014SC1F	CONNECTOR [CNTH1, CNTH2]	2	AD
19	QCNCM7014SC0D	CONNECTOR [CNBZ1, 2]	2	AB
20	QCNCM7014SC0H	CONNECTOR [CNPH1, 2]	2	AB
21	VHPSG206S//-1	PHOTO TRANSISTOR [P.E, RBN, PIN]	3	AG
22	VRD-RC2EY000J	RESISTOR (1/4W $0 \Omega \pm 5 \%$)[R4]	1	AA
23	VRD-RC2EY221J	RESISTOR (1/4W $220 \Omega \pm 5 \%$) [R1, R2, R3]	3	AA
24	QSW-Z2206SCZZ	HOOK SWITCH	1	AH
25	QSW-Z2226SCZZ	DOOR SWITCH	1	AG

2. Description

2-1. Extension board unit

1. Remove the TEL/LIU PWB, control PWB and Power Supply PWB from this unit, and mount the extension board unit instead.

- Before connecting the wiring to the extension board unit, set the test PWB switches to the fixed position.

2. The setting is as follows.

The hook switch are operated by OR of the mechanical unit switch and the test PWB switch. When performing installation in the machine unit, set the test PWB switches to the fixed position.

	Mechanical unit	
PWB to be tested		
	Actual operation with mechanical unit	
Hook SW	ON/OFF operation	ON-HOOK
	PWB sensor check	
Hook SW	ON-HOOK	ON/OFF operation

* Recording paper: ON No recording paper: OFF

Note: For the thermal head cable only, connect to the relay cable, not to the relay PWB.

2-2. Scan optical system adjustment

(1) Outline

The adjustment procedures of the scan optical system are described below:

(2) Adjustment procedures

(1) Switch off the machine and disconnect the AC power cable from the wall socket.
(2) Fully open the upper cabinet, remove the fixing screws of the recording paper tray and remove the recording paper tray. In order to perform a focus adjustment, remove the optical system unit from the frame.
(3) Disconnect the main PWB from the TEL/LIU PWB.
(4) Connect your oscilloscope channel 1 to the VIN signal and channel 2 of your oscilloscope to ϕT signal (Refer Pin 4 of connector CNCCD on the main pwb). Connect the earth clips of either probe to AG ground as shown. Set the trigger to channel 2.

(5) Re-connect the main PWB to the TEL/LIU PWB and connect these circuit boards to the connectors on the chassis.
(6) Re-assemble up to and including the recording paper tray to the main chassis and close upper cabinet.
(7) Plug the AC power cable into the wall outlet and turn the fax machine on.
(8) Insert a test chart in the document hopper and execute the CCD Adjust Mode diagnostic. Press the START key to enable local copy until approximately one fifth of the page has been copied, then press the STOP key to enable the CPU wait state.
(9) Fully open the upper cabinet and remove the recording paper tray.
(10) Install the scan adjustment jig to the optical system unit, so that the pattern surface is on the lower side.
(11) Fit the pins of the scan adjustment jig to the holes of the optical system frame.
(12) Lightly loosen the red screws of the CCD PWB and obtain the VID signal waveform in synchronization with $\phi \mathrm{T}$ signal waveform. Adjust the CCD PWB positioning to obtain the waveform as shown below.

[CCD waveform model]

CCD waveform
(13) After completing the CCD adjustment, tighten the two red screws on the CCD pwb and apply screw locking material to prevent the CCD pwb from moving.
(14) Assemble the recording paper tray and fixing screws.

[2] IC signal name

CONTROL PWB UNIT
IC1: VHiTD62001AP1 (TD62001AP)

IC15: VHiNJM2113M-1 (NJM2113M)

IC5: RH-iX2168SCZZ (MSM51V4800E)

IC8: VHiW24258S7LE (W24258S-70LE)

IC4: VHi27L20012MX (27L2000)

IC13: VHiSCE114//-1 (20415)

[3] Changing the record paper size

How to change the A4 size and letter size of the record papers

1) It becomes the record paper of the A4 size by installing A4 paper guide (PGiDM2493XHSA)
which shows in the drawing. Remove A4 guide when you use the record paper of the letter size.

2) Set soft switch SW-L2 No. 1 and the initialization of SW-L2 No. 2 as follows.

$\begin{aligned} & \hline \text { SW } \\ & \text { NO. } \end{aligned}$	DATA NO.	ITEM	Switch setting and function				Initial setting	Remarks
			1		0			
W		Paper set size		LETTER	LEGAL	A4		OPTION
L2	1		No. 1	0	0	1	0	
	2		No. 2	0	1	0	0	

UX-510A MODEL FO-1470

SELECTION CODE	DESTINATION
U	U.S.A.

CONTENTS

1 Cabinet, etc.

2 Upper cabinet

3 Document guide upper

4 Optical unit

5 Drive unit

6 Head unit
(7) Packing material \& Accessories

8 Control PWB unit

9 TEL/LIU PWB unit

10 Power supply PWB unit

11 Operation panel PWB unit

- Index

Because parts marked with " $\measuredangle \widehat{\$}$ " are indispensable for the machine safety maintenance and operation, it must be replaced with the parts specific to the product specification.

UX-510UA
FO-1470U
[1] Cabinet, etc.

NO.	PARTS CODE	PRICE RANK	$\begin{array}{\|c\|} \hline \text { NEW } \\ \text { MARK } \\ \hline \end{array}$	PART RANK	DESCRIPTION	
[1] Cabinet,etc.						
1	DCEKP264CXH01	BH	N	E	Operation panel unit	[510UA]
	DCEKP264CXH02	AT	N	E	Operation panel unit	[1470U]
2	QCNW-390AXHZZ	AK	N	C	Panel cable	
3	CCNW-391AXH01	AK	N	C	Speaker ass'y	
4	DCEKC281PXHZZ	BU	N	E	Control PWB unit(Within ROM)	
5	DCEKL266CXH01	BC	N	E	TEL/LIU PWB unit	
6	CGERH2363AX01	AK		C	Feed gear ass'y	
7	LBSHP2088AXZZ	AC		C	Transfer bearing	
8	MLEVP2253XHYA	AD	N	C	Hook switch lever	
9	NGERH2275XHZZ	AC		C	Transfer gear 2	
10	NROLR2333XHZZ	AP		C	Paper feed roller	
11	NROLR2467XHZZ	AM	N	C	Transfer roller	
12	PGIDM2481XHYA	AP	N	C	Document guide lower	[510UA]
	PGIDM2481XHYB	AG	N	C	Document guide lower	[1470U]
13	LBNDJ2006XHZZ	AA		C	Band(100mm)	
14	RCORF2125XHZZ	AE		B	Core(TRA31)	
15	GCABB2290XHAA	AZ	N	D	Lower cabinet	[510UA]
	GCABB2290XHAB	AL	N	D	Lower cabinet	[1470U]
17	MSPRC3039XHFJ	AC		C	Pinch roller spring 2	
18	NROLP2334XHZA	AC		C	Pinch roller	
19	NSFTZ2281XHZZ	AD		C	Pinch roller shaft	
20	QACCD2054XHZZ	AP	N	B	AC cord	
22	RDENT2157XHZZ	BF	N	E	Power supply PWB unit	
	GCOVA2376XHYA	AP	N	C	Top cover	[510UA]
	GCOVA2376XHYB	AG	N	C	Top cover	[1470U]
23	MSPRC3249XHZZ	AB	N	C	Hopper spring	
24	NGERP2318XHZZ	AD		C	Pinion gear	
25	PGIDM2483XHYA	AE	N	C	Hopper guide,left	[510UA]
	PGIDM2483XHYB	AC	N	C	Hopper guide,left	[1470U]
26	PGIDM2484XHYA	AE	N	C	Hopper guide,right	[510UA]
	PGIDM2484XHYB	AC	N	C	Hopper guide,right	[1470U]
27	TLABH4161AXZZ	AD		D	Imaging film set label	
28	LFRM-2180XHAZ	AX	N	C	Main frame	
29	LPLTM2791AXFW	AD		C	Hold down plate B	
30	LPLTP2884AXZZ	AP		C	Separate plate	
31	LSTPP2044XHZZ	AF		C	Back tention stopper	
32	MLEVP2249XHYZ	AD	N	C	P-IN sensor lever	
33	MLEVP2252XHYZ	AD	N	C	Film sensor lever	
34	MLEVP2258XHYZ	AD	N	C	Cover switch lever	
35	MSPRC2999XHFJ	AC		C	Back tention spring	
36	MSPRC3247XHZZ	AB	N	C	Separate plate spring	
37	MSPRC2927AXFJ	AC		C	Pop up spring	
38	MSPRD2929AXFJ	AC		C	Sensor lever spring	
39	NGERH2310XHZZ	AE		C	Back tension gear	
40	NSFTM2280AXZZ	AK		C	Film guide shaft B	
41	PFLT-2009AXZZ	AD		C	Back tension felt	
42	PSHEZ3344AXZZ	AD		C	Separate sheet	
43	PSHEZ3293AXZZ	AH		C	Separate plate sheet	
45	CROLR2362AX01	AN		C	PU roller ass'y	
46	CROLR2363XH02	AK	N	C	PO roller ass'y	
50	NGERH2359AXZZ	AD		C	PO gear	
51	NSFTM2268XHYZ	AE	N	C	PU roller shaft	
52	PGIDM2479XHYA	AK	N	C	U turn guide	
53	LBSHP2086AXZZ	AC		C	Platen bearing	
54	NGERH2309XHZZ	AC		C	Platen gear	
55	NGERH2358AXZZ	AC		C	PU gear	
57	NGERH2361AXZZ	AE		C	Reduction gear A	
58	NROLR2468XHZZ	AS	N	C	Platen roller	
59	CGERH2314AX51	AP		C	Slip gear ass'y	
60	MSPRD3250XHZZ	AB	N	C	PO pinch roller spring	
61	NGERH2279XHZZ	AC		C	Idler gear A	
62	NGERH2367AXZZ	AD		C	Take-up gear	
63	NROLP2332XHZZ	AD		C	PO pinch roller	
64	NSFTM2279AXZZ	AK		C	Film shaft C	
65	PGIDM2485XHYA	AC	N	C	PO guide	
66	LPLTM2924XHFW	AQ		C	Paper up plate	
67	LPLTP2888XHYA	AG	N	C	RP release plate	[510UA]
	LPLTP2888XHYB	AC	N	C	RP release plate	[1470U]
68	MSPRC2926AXFJ	AD		C	Cassette spring	
69	MSPRT2932AXFJ	AC		C	RP release spring	
70	NGERH2365AXZZ	AD		C	RP release gear,left	
71	NGERH2366AXZZ	AD		C	RP release gear,right	
72	PGIDM2480XHYA	AF	N	C	Paper guide	
73	PHOP-2095XHYA	AM	N	C	RP hopper	[510UA]
	PHOP-2095XHYB	AE	N	C	RP hopper	[1470U]
74	PSEL-2015SCZZ	AB		C	RP pad	
75	GCABC2291XHYA	AH	N	D	Rear cabinet	[510UA]
	GCABC2291XHYB	AL	N	D	Rear cabinet	[1470U]
76	GCOVA2375XHYZ	AK	N	C	ROM cover	
77	GCOVA2378AXZZ	AE		C	Memory cover	

UX-510UA FO-1470U

NO.	PARTS CODE	PRICE RANK	$\begin{aligned} & \hline \text { NEW } \\ & \text { MARK } \end{aligned}$	PART RANK	DESCRIPTION
[3] Document guide upper					
1	LPLTG2707XHZZ	AE		C	Separation rubber
2	LPLTP2790XHZZ	AD		C	Separate plate
3	MLEVP2257XHZA	AC	N	C	Panell lock lever
4	MSPRC2924AXFJ	AC		C	Pinch roller spring
5	MSPRD3197XHZZ	AD	N	C	Paper feed spring
6	MSPRT2923AXFJ	AC		C	Panel lock lever spring
7	MSPRT3235XHZZ	AB	N	C	Separate spring
8	NBRGP2141AXZZ	AC		C	Transfer bearing
9	NGERH2275XHZZ	AC		C	Transfer gear 2
10	NGERH2317XHZZ	AC		C	Idler gear,28Z
11	NGERH2356XHZZ	AC		C	Idler gear,20Z
12	NROLP2334XHZA	AC		C	Pinch roller
13	NROLR2466XHZZ	AK	N	C	Transfer roller
14	NSFTZ2257AXZZ	AE		C	Pinch roller shaft
15	PGIDM2482XHAZ	AM	N	C	Document guide upper
16	PSHEZ3290AXZZ	AD		C	Rear sheet
17	MARMP2026XHZZ	AC	N	C	Paper feed arm

[4] Optical unit

UX-510UA FO-1470U
[5] Drive unit

[6] Head unit

UX-510UA
FO-1470U
[7] Packing material \& Accessories

NO.	PARTS CODE	PRICE RANK	$\begin{aligned} & \hline \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { PART } \\ \text { RANK } \end{array}$	DESCRIPTION	
[7] Packing material \& Accessories						
1	TCADZ3055XHZZ	AN	N	D	Pop card	
2	LPLTP2889XHYA	AM	N	C	Paper tray A	[510UA]
	LPLTP2889XHYB	AE	N	C	Paper tray A	[1470U]
3	LPLTP2890XHYA	AM	N	C	Paper tray B	[510UA]
	LPLTP2890XHYB	AE	N	C	Paper tray B	[1470U]
4	PCOVA2115XHSB	AE	N	C	Paper tray cover	[510UA]
	PCOVA2115XHSA	AL		C	Paper tray cover	[1470U]
5	SPAKA328CXHZZ	AC	N	D	Protection pad,paper tray	
6	TINSE4157XHTZ	AK	N	D	Operation manual	[510UA]
	TINSE4162XHTZ	AL	N	D	Operation manual	[1470U]
7	TLABH276CXHZZ	AD	N	D	Rapid key labels	
	DUNTK464BXHFW	AX	N	E	Handset	[510UA]
	DUNTK464BXHOG	AP		E	Handset	[1470U]
10	QCNW-289ASCOW	AG		C	Handset cord	[510UA]
	QCNW-289ASCOG	AG		C	Handset cord	[1470U]
11	SPAKA213AAXZZ	AC		D	Protection sheet	
12	LBSHP2078XHZZ	AC		C	Imaging film frange	
13	NGERH2315XHZZ	AE		C	Imaging film gear	
14	PRBNN2009SCZZ	AV		S	Imaging film(Initial starter film 20m)	
15	QCNW-290ASCZZ	AE		C	Telephone line cord	
16	SPAKP4381AXZZ	AG		D	Vinyl cover	
17	SPAKA261CXHZZ	AC	N	D	Packing add., left	
18	SPAKA262CXHZZ	AC	N	D	Packing add.,right	
19	SPAKC263CXHZZ	AG	N	D	Packing case	[510UA]
	SPAKC300CXHTZ	AK	N	D	Packing case	[1470U]

NO.	PARTS CODE	$\begin{array}{\|l} \hline \text { PRICE } \\ \text { RANK } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \\ & \hline \end{aligned}$		DESCRIPTION	
[8] Control PWB unit							
1	UBATL2049SCZZ	AF		B	Battery(CR2032T23)		[BAT1]
2	VCEAGA1EW476M	AA		C	Capacitor(25WV 47 ${ }^{\text {F }}$)		[C1]
3	VCEAGA1HW226M	AB		C	Capacitor(50WV 22 $\mu \mathrm{F}$)		[C2]
4	VCEAGA1HW106M	AA		C	Capacitor(50WV 10 ${ }^{\text {F }}$)		[C3]
5	VCEAGA1HW107M	AA		C	Capacitor(50WV 100 ${ }^{\text {F }}$)		[C4]
6	VCEAGAOJW227M	AD		C	Capacitor(6.3WV 220 ${ }^{\text {F }}$)		[C5]
7	VCEAGA0JW227M	AD		C	Capacitor(6.3WV $220 \mu \mathrm{~F}$)		[C6]
8	VCEAGA1HW107M	AA		C	Capacitor(50WV 100 ${ }^{\text {F }}$)		[C7]
9	VCEAGA1HW226M	AB		C	Capacitor(50WV 22 $\mu \mathrm{F}$)		[C8]
10	VCEAGA1EW476M	AA		C	Capacitor(25WV 47 ${ }^{\text {F }}$)		[C11]
11	VCEAGA1HW106M	AA		C	Capacitor(50WV 10 ${ }^{\text {F }}$)		[C12]
12	VCEAGA1HW107M	AA		C	Capacitor(50WV 100 $\mu \mathrm{F}$)		[C13]
13	VCEAGA1HW106M	AA		C	Capacitor(50WV 10¢F)		[C14]
14	VCEAGA1HW106M	AA		C	Capacitor(50WV 10 $\mu \mathrm{F}$)		[C15]
15	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C100]
16	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C101]
17	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C102]
18	VCKYTV1HF104Z	AA		C	Capacitor(50WV 0.1 $\mu \mathrm{F}$)		[C104]
19	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C105]
20	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C107]
21	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C109]
22	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C110]
23	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C111]
24	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C112]
25	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C113]
26	VCKYTV1CF225Z	AD		C	Capacitor(16WV $2.2 \mu \mathrm{~F}$)		[C114]
27	VCCCCY1HH180J	AA		C	Capacitor(50WV 18PF)		[C115]
28	VCCCCY1HH330J	AA		C	Capacitor(50WV 33PF)		[C116]
29	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C117]
30	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C118]
31	VCKYTV1HF104Z	AA		C	Capacitor(50WV 0.1 1 F)		[C125]
32	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C126]
33	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C127]
34	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C128]
35	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C129]
36	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C130]
37	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C131]
38	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C132]
39	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C133]
40	VCKYTV1CF225Z	AD		C	Capacitor(16WV $2.2 \mu \mathrm{~F}$)		[C134]
41	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C135]
42	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C136]
43	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C137]
44	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C138]
45	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C139]
46	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C140]
47	VCKYTV1CF225Z	AD		C	Capacitor(16WV $2.2 \mu \mathrm{~F}$)		[C141]
48	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C142]
49	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C143]
50	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C144]
51	VCKYTV1CF225Z	AD		C	Capacitor(16WV 2.2 $\mu \mathrm{F}$)		[C146]
52	VCKYTV1CF225Z	AD		C	Capacitor(16WV 2.2 $\mu \mathrm{F}$)		[C147]
53	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C148]
54	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C149]
55	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C150]
56	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C151]
57	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C152]
58	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C154]
59	VCKYTV1CF225Z	AD		C	Capacitor(16WV $2.2 \mu \mathrm{~F}$)		[C157]
60	VCKYTV1CF225Z	AD		C	Capacitor(16WV $2.2 \mu \mathrm{~F}$)		[C158]
61	VCKYTV1CF225Z	AD		C	Capacitor(16WV $2.2 \mu \mathrm{~F}$)		[C159]
62	VCKYTV1CF225Z	AD		C	Capacitor(16WV $2.2 \mu \mathrm{~F}$)		[C160]
63	VCKYTV1CF225Z	AD		C	Capacitor(16WV 2.2 $\mu \mathrm{F}$)		[C161]
64	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C163]
65	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C164]
66	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[C168]
67	VCKYCY1HB103K	AA		C	Capacitor(50WV 0.01 F)		[C169]
68	VCKYCY1HB472K	AA		C	Capacitor(50WV 4700PF)		[C170]
69	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C171]
70	VCCCCY1HH150J	AB		C	Capacitor(50WV 15PF)		[C174]
71	VCCCCY1HH150J	AB		C	Capacitor(50WV 15PF)		[C175]
72	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C176]
73	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C177]
74	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C178]
75	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C179]
76	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C180]
77	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C182]
78	VCCCCY1HH150J	AB		C	Capacitor(50WV 15PF)		[C183]
79	VCKYTV1HF104Z	AA		C	Capacitor(50WV 0.1 $\mu \mathrm{F}$)		[C185]
80	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[C186]

NO.	PARTS CODE	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$	$\begin{aligned} & \hline \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \end{aligned}$		DESCRIPTION	
[8] Control PWB unit							
81	VCKYCY1CB104K	AB		C	Capacitor(16WV 0.1 $\mu \mathrm{F}$)		[C188]
82	VCKYCY1CB104K	AB		C	Capacitor(16WV 0.1 $\mu \mathrm{F}$)		[C189]
83	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C190]
84	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[C191]
85	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C192]
86	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[C196]
87	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C197]
88	VCKYCY1CB104K	AB		C	Capacitor(16WV 0.1 $\mu \mathrm{F}$)		[C198]
89	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[C207]
90	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		C214]
91	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C216]
92	VCCCCY1HH221J	AA		C	Capacitor(50WV 220PF)		[C218]
93	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C219]
94	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C220]
95	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C221]
96	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C223]
97	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C224]
98	VCTYPA1HF104Z	AC		C	Capacitor(50WV 0.1 $\mu \mathrm{F}$)		[C227]
99	QCNCM7014SC0G	AB		C	Connector(7pin)		[CNCCD]
100	QCNCM2442SC0B	AB		C	Connector(2pin)		[CNCSW]
101	QCNCM7014SC0B	AD		C	Connector(2pin)		[CNLED]
102	QCNCM2499SC1D	AG		C	Connector(14pin)		[CNLIUA]
103	QCNCM7014SC0F	AB		C	Connector(6pin)		[CNMT]
104	QCNCM7014SC1E	AC		C	Connector(15pin)		[CNPN]
105	QCNCM2499SC0F	AF		C	Connector(6pin)		[CNPW]
106	QCNCM2401SC0B	AA		C	Connector(2pin)		[CNSP]
107	QCNCM7014SC1F	AD		C	Connector(16pin)		[CNTH]
108	VHE1N4748A/-1	AC		B	Diode(1N4748A)		[D1]
109	VHD1SS355//-1	AB		B	Diode(1SS355)		[D100]
110	VHD1SS355//-1	AB		B	Diode(1SS355)		[D101]
111	VHDHRW0202B-1	AD		B	Diode(HRW0202B)		[D102]
112	VHD1SS355//-1	AB		B	Diode(1SS355)		[D103]
113	VHD1SS355//-1	AB		B	Diode(1SS355)		[D104]
114	VHD1SS355//-1	AB		B	Diode(1SS355)		[D105]
115	VHD1SS355//-1	AB		B	Diode(1SS355)		[D106]
116	QFS-P2010SCZZ	AD		B	IC protector(KAB2402)		[FU100]
117	VHITD62001AP1	AE		B	IC(TD62001AP)		[IC1]
118	RH-IX2202SCZZ	AM	N	B	IC(HCT244)		[IC2]
119	RH-IX2203SCZZ	AH	N	B	IC(LV125A)		[IC3]
120	QSOCZ2051SC32	AC		C	IC socket(32pin)		[IC4]
121	VHI27020FPS0B	BN	N	B	IC,EPROM(2MB)		[IC4]
122	RH-IX2168SCZZ	BB		B	IC(MSM51V4800E)		[IC5]
123	VHIW24258S7LE	AQ		B	IC(W24258S-70LE)		[IC8]
124	VHISCE114//-1	BG		B	IC(SCE114)		[IC9](Within IC9 and IC13 pair)
125	RH-IX2201SCZZ	AG	N	B	IC(HCT04)		[IC10]
126	VHINJM318M/-F	AF		B	IC(NJM318M)		[IC11]
127	VHISCE114//-1	BG		B	IC(20415)		[IC13](Within IC9 and IC13 pair)
128	VHINJM2113M-1	AG		B	IC(NJM2113)		[IC15]
129	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[L101]
130	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[L107]
131	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[L112]
132	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[L116]
133	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[L118]
134	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[L119]
135	VHPSG206S//-1	AG		B	Photo transistor(SG206S)		[PI1]
136	VHPSG206S//-1	AG		B	Photo transistor(SG206S)		[P12]
137	VSDTC143ZK/-1	AD		B	Transistor(DTC143ZK)		[Q100]
138	VSDTC143ZK/-1	AD		B	Transistor(DTC143ZK)		[Q102]
139	VSRNC1402//-1	AC		B	Transistor(RNC1402)		[Q104]
140	VSRNC1402//-1	AC		B	Transistor(RNC1402)		[Q105]
141	VRS-RE3AA102J	AA		C	Resistor(1W 1.0K $\Omega \pm 5 \%$)		[R1]
142	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R101]
143	VRS-CY1JB474J	AA		C	Resistor(1/16W $470 \mathrm{~K} \Omega \pm 5 \%$)		[R102]
144	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		[R104]
145	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R106]
146	VRS-CY1JB562J	AA		C	Resistor(1/16W 5.6K $2 \pm 5 \%$)		[R107]
147	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R108]
148	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R109]
149	VRS-CY1JB106J	AA		C	Resistor(1/16W 10M $2 \pm 5 \%$)		[R113]
150	VRS-CY1JB223J	AA		C	Resistor(1/16W $22 \mathrm{~K} \Omega \pm 5 \%$)		[R115]
151	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R116]
152	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R117]
153	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R119]
154	VRS-CY1JB513J	AA		C	Resistor(1/16W $51 \mathrm{~K} \Omega \pm 5 \%$)		[R120]
155	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R123]
156	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R124]
157	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		[R125]
158	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R127]
159	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R128]
160	VRS-CY1JB224J	AA		C	Resistor(1/16W $220 \mathrm{~K} \Omega \pm 5 \%$)		[R129]

NO.	PARTS CODE	$\begin{array}{\|l} \hline \text { PRICE } \\ \text { RANK } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \end{aligned}$		DESCRIPTION	
[8] Control PWB unit							
161	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R130]
162	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		[R131]
163	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		R132]
164	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R133]
165	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		R134]
166	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R135]
167	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R136]
168	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R137]
169	VRS-CY1JB223J	AA		C	Resistor(1/16W $22 \mathrm{~K} \Omega \pm 5 \%$)		[R139]
170	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		R140]
171	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R141]
172	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R142]
173	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		R143]
174	VRS-CY1JB102J	AA		C	Resistor(1/16W 1K $2 \pm 5 \%$)		[R144]
175	VRS-CY1JB471J	AA		C	Resistor(1/16W 470 $2 \pm 5 \%$)		R146]
176	VRS-CY1JB203J	AA		C	Resistor(1/16W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R151]
177	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R152]
178	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R153]
179	VRS-CY1JB471J	AA		C	Resistor(1/16W $470 \Omega \pm 5 \%$)		[R154]
180	VRS-CY1JB471J	AA		C	Resistor(1/16W $470 \Omega \pm 5 \%$)		[R155]
181	VRS-CY1JB101J	AA		C	Resistor(1/16W $100 \Omega \pm 5 \%$)		[R160]
182	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R163]
183	VRS-CY1JB104J	AA		C	Resistor(1/16W 100K $\pm \pm 5 \%$)		R164]
184	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R165]
185	VRS-CY1JB102J	AA		C	Resistor(1/16W 1K $\Omega \pm 5 \%$)		[R166]
186	VRS-CY1JB203J	AA		C	Resistor(1/16W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R168]
187	VRS-CY1JB221J	AA		C	Resistor(1/16W $220 \Omega \pm 5 \%$)		[R170]
188	VRS-CY1JB105J	AA		C	Resistor(1/16W 1M $2 \pm 5 \%$)		R171]
189	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R172]
190	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		R173]
191	VRS-CY1JB102J	AA		C	Resistor(1/16W $1 \mathrm{~K} \Omega \pm 5 \%$)		[R175]
192	VRS-CY1JB333J	AA		C	Resistor(1/16W 33K $2 \pm 5 \%$)		[R176]
194	VRS-CY1JB472J	AA		C	Resistor(1/16W 4.7K $\Omega \pm 5 \%$)		[R178]
195	VRS-CY1JB393J	AA		C	Resistor(1/16W $39 \mathrm{~K} \Omega \pm 5 \%$)		[R179]
196	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		R180]
197	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R181]
198	VRS-CY1JB472J	AA		C	Resistor(1/16W 4.7K $\Omega \pm 5 \%$)		[R182]
199	VRS-CY1JB113J	AA		C	Resistor(1/16W 11K $2 \pm 5 \%$)		R183]
200	VRS-CY1JB104J	AA		C	Resistor(1/16W 100K $\Omega \pm 5 \%$)		[R184]
201	VCCCCY1HH221J	AA		C	Capacitor(50WV 220PF)		R185]
202	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		R188]
203	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R189]
204	VRS-CY1JB104J	AA		C	Resistor(1/16W 100K $2 \pm 5 \%$)		R190]
205	VRS-CY1JB302J	AA		C	Resistor(1/16W $3 \mathrm{~K} \Omega \pm 5 \%$)		[R195]
206	VRS-CY1JB433J	AA		C	Resistor(1/16W 43K $2 \pm 5 \%$)		R196]
207	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R198]
208	VRS-CY1JB102J	AA		C	Resistor(1/16W 1K $\Omega \pm 5 \%$)		[R200]
209	VRS-CY1JB222J	AA		C	Resistor(1/16W $2.2 \mathrm{~K} \Omega \pm 5 \%$)		R201]
210	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R202]
211	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R203]
212	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R204]
213	VRS-TS2AD000J	AA		C	Resistor(1/10W $0 \Omega \pm 5 \%$)		[R205]
214	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		R206]
215	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R207]
216	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R208]
217	VCCCCY1HH221J	AA		C	Capacitor(50WV 220PF)		[R209]
218	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R210]
219	VRS-CY1JB224J	AA		C	Resistor(1/16W $220 \mathrm{~K} \Omega \pm 5 \%$)		[R212]
220	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R213]
221	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		[R220]
222	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		[R221]
223	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		[R222]
224	RR-TZ3018SCZZ	AC		B	Resistor array (470 $\times 4$)		[RA1]
225	RR-TZ3017SCZZ	AC		B	Resistor array ($270 \Omega \times 4$)		[RA2]
226	RR-TZ3017SCZZ	AC		B	Resistor array ($270 \Omega \times 4$)		[RA3]
227	RR-TZ3017SCZZ	AC		B	Resistor array (270 2×4)		[RA4]
228	RR-TZ3018SCZZ	AC		B	Resistor array (470 \times (${ }^{\text {a }}$		[RA5]
229	RR-TZ3018SCZZ	AC		B	Resistor array (470 $\times 4$)		[RA6]
230	RR-TZ3017SCZZ	AC		B	Resistor array ($270 \Omega \times 4$)		[RA7]
231	RR-TZ3017SCZZ	AC		B	Resistor array (270 $\times 4$)		[RA8]
232	RR-TZ3017SCZZ	AC		B	Resistor array (270 2×4)		[RA9]
233	RR-TZ3017SCZZ	AC		B	Resistor array (270 2×4)		[RA10]
234	RR-TZ3029SCZZ	AB		B	Resistor array(1K 2×4)		[RA11]
235	RR-TZ3017SCZZ	AC		B	Resistor array ($270 \Omega \times 4$)		[RA12]
236	RR-TZ3017SCZZ	AC		B	Resistor array (270 $\times 4$)		[RA13]
237	RR-TZ3018SCZZ	AC		B	Resistor array (470 $\times 4$)		[RA14]
238	VHI62FP332P-1	AF		B	IC(XC62FP3302P)		[REG1]
239	RRLYD3130SCZZ	AN		B	Relay(OJE-SH-124DM)		[RY1]
240	RCRSB0297AFZZ	AD		B	Crystal(32.768kHz)		[X1]
241	RCRSQ2157SCZZ	AF		B	Crystal(32.256MHz)		[X2]

NO.	PARTS CODE	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$	$\begin{aligned} & \hline \text { NEW } \\ & \text { MARK } \\ & \hline \end{aligned}$	PART RANK	DESCRIPTION
[8] Control PWB unit					
242	QCNW-4358XH95	AA	N	C	Jumper wire
	(Unit)				
901	DCEKC281PXHZZ	BU	N	E	Control PWB unit(Within ROM)

[9] TEL/LIU PWB unit

NO.	PARTS CODE	PRICE RANK	$\begin{array}{\|c\|} \hline \text { NEW } \\ \text { MARK } \\ \hline \end{array}$	PART RANK	DESCRIPTION	
[9] TEL/LIU PWB unit						
72	VRS-CY1JB393J	AA		C	Resistor(1/16W 39K $2 \pm 5 \%$)	[R132]
73	VRS-CY1JB000J	AA		C	Resistor (1/16W $0 \Omega \pm 5 \%$)	[R133]
74	VRS-CY1JB102J	AA		C	Resistor(1/16W $1 \mathrm{~K} \Omega \pm 5 \%$)	[R134]
75	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)	[R135]
76	VRS-CY1JB332J	AA		C	Resistor($1 / 16 \mathrm{~W} 3.3 \mathrm{~K} \Omega \pm 5 \%$)	[R136]
77	VRS-CY1JB000J	AA		C	Resistor ($1 / 16 \mathrm{~W} 0 \Omega \pm 5 \%$)	[R137]
78	VRS-CY1JB203J	AA		C	Resistor(1/16W $20 \mathrm{~K} \Omega \pm 5 \%$)	[R138]
79	VRS-CY1JB203J	AA		C	Resistor(1/16W 20K $\Omega \pm 5 \%$)	[R139]
80	VRS-CY1JB000J	AA		C	Resistor ($1 / 16 \mathrm{~W} 0 \Omega \pm 5 \%$)	[R140]
81	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)	[R141]
82	QSW-Z2226SCZZ	AG		C	Door switch	[SW1]
83	QSW-Z2263XHZZ	AG		C	Hook switch	[SW2]
84	RTRNI2164XHZZ	AG		B	Transformer(12164)	[T1]
85	VHVERZV5D471/	AC		B	Varistor(ERZV5D471)	[VA2]
86	VHVERZV5D471/	AC		B	Varistor(ERZV5D471)	[VA3]
87	VHEHZ2C1//l-1	AA		B	Zener diode(HZ2C1)	[ZD4]
88	VHEHZ2C1//l-1	AA		B	Zener diode(HZ2C1)	[ZD5]
89	VHEHZ27-1//-1	AB		B	Zener diode(HZ27)	[ZD6]
90	VHEMTZJ5R1B-1	AB	N	B	Zener diode(MTZJ5.1B)	[ZD7]
	(Unit)					
901	DCEKL266CXH01	BC	N	E	TEL/LIU PWB unit	
[10] Power supply PWB unit						
1	OCBUGZ1274ZZI	AD	N	C	Capacitor(R46KI3110M)	[C1]
2	0CBUGAL151SM/	AL		C	Capacitor(KMF200VB-150(M)VV-18)	[C2]
3	0CBUGCU681EL/	AD	N	C	Capacitor(CC45SL3AD681JYNN)	[C3]
4	OCBUGXGCF152/	AF	N	C	Capacitor(GRM39B152K50PT)	[C4]
5	OCBUGFF472EH/	AD		C	Capacitor(AMZ-472J50)	[C5]
6	OCBUEXCAA000/	AB		C	Resistor(MCR10EZHJO00)	[C6]
7	0CBUGAE331TS/	AH		C	Capacitor(LXJ35VB330(M)MC-10)	[C8]
8	0CBUGAC331TR/	AF		C	Capacitor(LXJ16VB330(M)FT-8)	[10]
9	OCBUGXGCF104/	AD	N	C	Capacitor(GRM39B104K50PT)	[C12]
10	0CBUGCS152JG/	AD	N	C	Capacitor(DD08-959B152K500)	[C13]
11	0CBUGCD104DT/	AD	N	C	Capacitor(DD410-959SR104M25)	[16]
12	OCBUGXGCF102/	AD	N	C	Capacitor(GRM39B102K50PT)	[C17]
13	OCBUGCU472BW/	AD	N	C	Capacitor(DE0905-959E472Z1K)	[23]
14	0CBUGXGDF271/	AD	N	C	Capacitor(GRM39CH271J50PT)	[C24]
15	OCBUGZ1274ZZ/	AD	N	C	Capacitor(R46K13110M)	[C25]
16	0CBUGCM332BJ/	AF		C	Capacitor(DE1410-1E332M-KX)	[C26]
17	0CBPKZ1219ZZ/	AD		C	Base post ass'y(THL-P03P B1)	CN1]
18	0CBPKZ1251ZZ/	AH	N	C	Connector(06R-FJ)	[CN2]
19	OCBUBY0020AK/	AD		B	Diode(1SS355TE-17)	[D5]
20	OCBUBC0336AZ/	AL		B	Diode(S3L20U-4004P15)	[D7]
21	OCBUBC0304AZ/	AE		B	Diode(AK04-V0)	[D8]
22	0CBUBC0169CL/	AE	N	B	Diode(ERA22-06V3)	[D9]
23	OCBUBB0248EZ/	AD	N	B	Diode stack(S1WB(A)60B-4102)	[DS1]
24	0CBPJCSX2501/	AH		A	Current fuse(23702.5 ME600)	[F1]
25	0CBPZZ0906ZZ/	AH		A	Circuit protect(CCP2E100)	[F3]
26	0CBBFZ89256Z/	AD		B	Beads core(BL02RN1-R62T4)	[FB1]
27	0CBUCB0111AZ/	AM		B	IC(UPC78M05AHF)	[IC1]
28	OCBUKZ0790ZZ/	AK		C	Filter(ELF15N005A)	[L1]
29	0CBLRZ6708ZQ/	AQ	N	C	Heat sink(MN001-5001AT)	[MT1]
30	OCBLRZ6709ZQ/	AQ	N	C	Heat sink(MN001-5002AT)	[MT2]
31	OCBUDC0062MZ	AG		B	Photo coupler(PS2501-1L)	[PC1]
32	OCBUAG0161EZ/	AQ		B	FET(FS5KM-14-AN)	[Q1]
33	OCBUAC0255AM/	AD	N	B	Transistor(2SC4115S QR TP)	[Q2]
34	0CBUAC0264AK/	AD	N	B	Transistor(2SC1741AS TP QR)	[Q3]
35	OCBUAC0034EL/	AD	N	B	Transistor(2SC1740S-TP)	[Q4]
36	OCBUEEC225CF/	AC	N	C	Resistor(RD50SS-T26-225J)	[R1]
37	OCBUEEB474DJ/	AC	N	C	Resistor(RDM14TS474J)	[R2]
38	OCBUEEB474DJ/	AC	N	C	Resistor(RDM14TS474J)	[R3]
39	OCBUEXDAA561/	AC	N	C	Resistor(MCR18EZHJ561)	[R4]
40	OCBUEXCAA682/	AC	N	C	Resistor(MCR10EZHJ682)	[R5]
41	OCBUEXCAA473/	AC	N	C	Resistor(MCR10EZHJ473)	[R6]
42	OCBUEXCAA181/	AC	N	C	Resistor(MCR10EZHJ181)	[R7]
43	OCBUEXCAA473/	AC	N	C	Resistor(MCR10EZHJ473)	[R8]
44	OCBUEXCAA471/	AC	N	C	Resistor(MCR10EZHJ471)	[R9]
45	OCBUEFDR15DB/	AE		C	Resistor(RSMF1TBR15G)	[R10]
46	OCBUEXCAA472/	AC	N	C	Resistor(MCR10EZHJ472)	[R13]
47	OCBUEXCAA102/	AC	N	C	Resistor(MCR10EZHJ102)	[R14]
48	OCBUEXCAA334/	AC	N	C	Resistor(MCR10EZHJ334)	[R15]
49	OCBUEYAA2202/	AC	N	C	Resistor(MCR10EZHF2202)	[R16]
50	OCBUEYAA8201/	AC	N	C	Resistor(MCR10EZHF8201)	[R17]
51	OCBUEXDAA332/	AC	N	C	Resistor(MCR18EZHJ332)	[R18]
52	OCBUEFE104DH/	AD		C	Resistor(SPR2-T52-104J)	[R24]
53	0CB829655033/	BE	N	B	Transformer(PTTN117-KTT)	[T1]

■ l dex

PARTS CODE	No.	$\begin{aligned} & \text { PRICEE } \\ & \text { RANK } \end{aligned}$		$\begin{aligned} & \text { PART } \\ & \text { PANK } \\ & \hline \end{aligned}$	PARTS CODE	No.	$\begin{array}{\|l\|l\|} \hline \text { PRICEE } \\ \text { RANK } \end{array}$		$\begin{aligned} & \text { PARTK } \\ & \text { RANK } \end{aligned}$
					LX-BZ2138XHZZ	1-B7	AB		C
CCNW-391AXH01	${ }^{1-3}$	AK	N	c	LX-Bz2182SCzZ	4-B8	AB		${ }^{\text {c }}$
CGERH2314AX51	1-59	AP		c	LX-Bz2222AXzz	1-B3	AC		C
CGERH2363AX01	1-6	AK		c	LX-WZ2228AXZZ	6-W1	AB		c
CLEVP2254AX01	5-1	AE		c	LX-WZ2228XHZZ	1-W1	AB		c
CLEVP2255AX01	5-2	AE		c	LX-WZ2246XHZZ	1-W2	${ }^{\text {AB }}$		c
CLEVP2256AX01	5-3	AE		c					
CROLR2362AX01	${ }^{1-45}$	AN		c	MARMP2026XHZZ	3-17	AC	N	c
CROLR2363XH02	${ }^{1-46}$	AK	N	c	MCAMP2023AXZZ	5-6	AD		C
[D]					MLEVP2248AXZZ	6-4	AD		c
DCEKC281PXHZZ	1-4	BU	N	E	MLEVP2249XHYZ	1-32	AD	N	
	8.901	BU	N	E	MLEVP2252XHYZ	1-33	AD	N	c
DCEKD475AAX05	${ }^{4-1}$	BE		E	MLEVP2253XHYA	${ }^{1-8}$	AD	N	c
	11-901	BE		E	MLEVP2257XHZA	3-3	AC	N	c
DCEKL266CXH01	${ }^{1-5}$	BC	N	E	MLEVP2258XHYZ	${ }^{1-34}$	${ }_{\text {AD }}$	N	c
	9.901	BC	N	E	MSPRC2920AXFJ	6-6	AC		c
DCEKP264CXH01	1-1	BH	N	E	MSPRC2924AXFJ	3-4	AC		c
	2-901	BH	N	E	MSPRC2926AXFJ	${ }^{1-68}$	AD		c
DCEKP264CXH02	1-1	AT	N	E	MSPRC2927AXFJ	1-37	AC		C
	2-901	AT	N	E	MSPRC2928AXFJ	6-7	AC		c
DCEKP351BXH02	2-1	BF	N	E	MSPRC2964AXFJ	6-5	AD		c
	12-901	BF	N	E	MSPRC2999XHFJ	1-35	AC		c
DCYOD475AXH03	4.901	BN	N	E	MSPRC3039XHFJ	1-17	AC		c
DUNTK464BXHFW	7-9	AX	N	E	MSPRC3210XHZZ	6-15	AE	N	${ }^{\text {c }}$
DUNTK464BXHOG	7-9	AP		E	MSPRC3212XHZZ	6-16	AD	N	
[G]					MSPRC3247XHZZ	1-36	AB	N	c
GCABA2289XHYA	2-2	AR	N	D	MSPRC3249XHZZ	1-23	${ }^{\text {AB }}$	N	c
GCABA2289XHYB	2-2	AE	N	D	MSPRD2929AXFJ	1-38	AC		
GCABB2290XHAA	1-15	AZ	N	D	MSPRD2962AXFJ	5-7	AC		c
GCABB2290XHAB	1-15	AL	N	D	MSPRD3197XHZZ	3-5	AD	N	c
GCABC2291XHYA	1-75	AH	N	D	MSPRD3250XHZZ	$1-60$	AB	N	
GCABC2291XHYB	1-75	AL	N	D	MSPRP2817SCZZ	4.3	AC		
GCOVA2375XHYZ	1.76	AK	N	c	MSPRP3123XHZZ	${ }^{1-98}$	AC		c
GCOVA2376XHYA	1-22	AP	N	C	MSPRT2923AXFJ	3-6	AC		c
GCOVA2376XHYB	1-22	AG	N	c	MSPRT2932AXFJ	$1-69$	AC		
GCOVA2378AXZZ	1.77	AE		c	MSPRT3235XHZZ	3-7	AB	N	c
GLEGG2063AXZZ	1-79	AC		c	[${ }^{\text {] }}$				
[H]					NBRGP2141AXZZ	3-8	${ }^{\text {AC }}$		${ }^{\text {c }}$
HPNLH2405XXSA	1.99	${ }^{\text {AG }}$	N	D	NGERH2275XHZZ	1.9	${ }_{\text {AC }}$		${ }^{\text {c }}$
HPNLH2405XHSB	1-99	AC	N	D		3-9	AC		
[J]					NGERH2279XHZZ	1-61	AC		c
JBTN-2202AXSC	2-3	${ }_{\text {AG }}$		${ }^{\text {c }}$		${ }_{5}^{5-8}$	AC		C
JBTN-2202XHYA	${ }^{2-3}$	AH	N	${ }^{\circ}$	NGERH2281XHZZ	5-9	${ }^{\text {AD }}$		${ }^{\text {c }}$
JBTN-2203AXSC	2-4	AF		c	NGERH2309XHZZ	$1-54$	AC		C
JBTN-2203XHYA	2-4	AF	N	-	NGERH2310XHZZ	1-39	AE		
JBTN-2204AXSB	2-5	AD		c	NGERH2315XHzZ	7-13	AE		
JBTN-2204XHYA	2-5	AE	N	C	NGERH2317XHZZ	3-10	AC		C
JBTN-2205AXSB	${ }^{2-6}$	AD		c	NGERH2356XHZZ	3-11	AC		c
JBTN-2205XHYA	2-6	AD	N	${ }^{\circ}$	NGERH2358AXZZ	1-55	AC		${ }^{\text {c }}$
JBTN-2206XHYA	2.7	AE	N	c	NGERH2359AXZZ	1-50	${ }_{\text {AD }}$		${ }^{\circ}$
JBTN-2206XHYB	2.7	AC	N	C	NGERH2360AXZZ	5-15	AE		${ }^{\text {c }}$
JKNBP2074XHYA	6-1	AD	N	-	NGERH2361AXZZ	1.57	AE		C
JKNBP2074XHYB	6-1	AC	N	c		5-10	AE		
[L]					NGERH2362AXZZ	$5-11$	AE		${ }^{\text {c }}$
LBNDJ2006XHZZ	1-13	AA		c	NGERH2365AXZZ	1.70	AD		c
	${ }^{5-17}$	AA		${ }^{\text {c }}$	NGERH2366AXZZ	$\frac{1.71}{1-62}$	AD		
LBNDJ2008SCZZ	$\frac{6-2}{\frac{6-84}{1-84}}$	$\frac{\mathrm{AA}}{\mathrm{AA}}$		c	NGERH2367AXZZ	${ }_{1}^{1-62}$	${ }^{\text {AD }}$ A		
LBSHP2078XHZZ	7-12	${ }_{\text {AC }}$		c	NROLP2332XHZZ	${ }^{1-63}$	${ }_{\text {AD }}$		c
LBSHP2086AXZZ	${ }^{1-53}$	AC		c	NROLP2334XHZA	1-18	AC		c
LBSHP 2088AXZZ	$1-7$	AC		${ }^{\text {c }}$		3-12	AC		c
LFRM-2164XHAA	4-2	AF	N	c	NROLP2396XHZZ	$1-94$	AD		c
LFRM-2179XHZA	6-3	AK	N	c	NROLR2333XHZZ	1-10	AP		${ }^{\text {c }}$
LFRM-2180XHAZ	1-28	AX	N	${ }^{\text {c }}$	NROLR2466XXZZ	3-13	AK	N	${ }^{\text {c }}$
LFRM-2181AXZZ	5-4	AV		c	NROLR2467XHZZ	1-11	AM	N	${ }^{\text {c }}$
LPLTG2707XHZZ	3-1	AE		c	NROLR2468XHZZ	1.58	AS	N	c
LPLTM2791AXFW	1-29	AD		C	NSFTM2268XHYZ	$1-51$	AE	N	c
LPLTM2886AXFW	5-5	AQ		${ }^{\text {c }}$	NSFTM2278AXZZ	6-8	${ }_{\text {AH }}$		${ }^{\circ}$
LPLTM2924XHFW	1-66	AQ		C	NSFTM2279AXZZ	$1-64$	AK		C
LPLTM3122XHZZ	1-97	AD	N	c	NSFTM2280AXZZ	1-40	AK		c
LPLTP2790XHZZZ	3-2	AD		${ }^{\text {c }}$	NSFFZ2257AXZZ	3-14	AE		c
LPLTP2884AXZZ	1-30	AP		c	NSFTZ2281XHZZ	1-19	AD		c
LPLTP2888XHYA	1-67	AG	N	c	$\frac{[P]}{\text { PCor }}$				
LPLTP2888XHYB	$1-67$	AC	N	C	PCOVA2I $4 \times \mathrm{CHZ}$	$\frac{1-78}{7-4}$	AE	N	c
LPLTP2889XYYY	7 7-2	AM	${ }_{N}$	${ }^{\text {c }}$	PCOUA2115XHSB	7.4	AE	N	${ }^{\text {c }}$
LPLTP2890XHYA	7.3	AM	N	c	PCUSG2111XHZZ	5-16	AE		c
LPLTP2890XHYB	7.3	AE	N	c	PCUSG2112XHZZ	1-90	AE		C
LPLTP2968XHZZ	1-93	AP		c	PCUSS2114XHZZ	1-95	AD		c
LSTPP2044XHZZ	1-31	AF		c	PCUSS2124XHZZ	4-15	AA	N	c

PARTS CODE	No.	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	$\begin{aligned} & \text { NEWW } \\ & \text { MABK } \end{aligned}$	PART
PFLT-2006XHZZ	4-4	AA		C
PFLT-2009AXZZ	1-41	AD		C
PGIDM2478AXZR	6-10	AD		C
PGIDM2479XHYA	1-52	AK	N	C
PGIDM2480XHYA	1-72	AF	N	C
PGIDM2481XHYA	1-12	AP	N	C
PGIDM2481XHYB	1-12	AG	N	C
PGIDM2482XHAZ	3-15	AM	N	C
PGIDM2483XHYA	1-25	AE	N	C
PGIDM2483XHYB	1-25	AC	N	C
PGIDM2484XHYA	1-26	AE	N	C
PGIDM2484XHYB	1-26	AC	N	C
PGIDM2485XHYA	1-65	AC	N	C
PGIDM2519XHZL	6-9	AN		C
PGLSP2058XHZZ	4-5	AE		C
PHOP-2095XHYA	1-73	AM	N	C
PHOP-2095XHYB	1-73	AE	N	C
PLNS-2049XHZZ	4-6	AZ		C
PMIR-2070XHZZ	4-7	AG		C
PMIR-2071XHZZ	4-8	AH		C
PMIR-2072XHZZ	4-9	AH		C
PRBNN2009SCZZ	7-14	AV		S
PSEL-2015SCZZ	1-74	AB		C
PSHEP3606XHZZ	4-17	AA	N	C
PSHEZ3196AXZZ	4-10	AC		C
PSHEZ3258AXZZ	4-12	AD		C
PSHEZ3290AXZZ	3-16	AD		C
PSHEZ3291AXZZ	2-8	AD		C
PSHEZ3292AXZZ	6-11	AE		C
PSHEZ3293AXZZ	1-43	AH		C
PSHEZ3332AXZZ	1-81	AE		C
PSHEZ3341AXZZ	1-86	AC		C
PSHEZ3342AXZZ	1-87	AC		
PSHEZ3344AXZZ	1-42	AD		C
PSHEZ3366XHZZ	6-17	AD		C
PSHEZ3563XHZZ	1-80	AB	N	C
[Q]				
QACCD2054XHZZ	1-20	AP	N	B
QCNCM2401SC0B	8-106	AA		C
QCNCM2442SC0B	8-100	AB		C
QCNCM2499SC0F	8-105	AF		C
QCNCM2499SC1D	8-102	AG		C
QCNCM7014SC0B	8-101	AD		C
QCNCM7014SC0F	8-103	AB		C
QCNCM7014SC0G	8-99	AB		C
QCNCM7014SC1E	8-104	AC		C
QCNCM7014SC1F	8-107	AD		C
QCNCW2500SC1D	9-32	AG		C
QCNW-289ASCOG	7-10	AG		C
QCNW-289ASCOW	7-10	AG		C
QCNW-290ASCZZ	7-15	AE		C
QCNW-390AXHZZ	1-2	AK	N	C
	2-11	AK	N	C
QCNW-392AXHZZ	6-12	AM	N	C
QCNW-393AXHZZ	6-13	AE	N	C
QCNW-394AXHZZ	5-12	AD	N	C
QCNW-395AXHZZ	4-13	AD	N	C
QCNW-4358XH95	8-242	AA	N	C
QCNW-4692AXZZ	11-3	AH		C
QCNW-4704XHZZ	9-2	AD		C
QFS-P2010SCZZ	8-116	AD		B
QJAKZ2046SCBB	9-33	AH		C
QJAKZ2079XH0D	9-31	AD		C
QSOCZ2051SC32	8-120	AC		C
QSW-F2224SCZZ	5-13	AE		C
QSW-K0005AWZZ	12-1	AC		C
QSW-M2246AXZZ	2-9	AH		C
	12-2	AH		C
QSW-M2247AXZA	2-10	AE		C
	12-3	AE		C
QSW-Z2226SCZZ	9-82	AG		C
QSW-Z2263XHZZ	9-83	AG		C
$[\mathrm{R}]$				
RC-FZ3024SCZZ	9-8	AG		C
RCORF2125XHZZ	1-14	AE		B
RCRSB0297AFZZ	8-240	AD		B
RCRSQ2157SCZZ	8-241	AF		B
RDENT2157XHZZ	1-21	BF	N	E
	10-901	BF	N	E
RFILN2027XHZZ	9-39	AC		C

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	NEW MARK	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \\ & \hline \end{aligned}$
RFILN2027XHZZ	9-40	AC		C
"	9-41	AC		C
"	9-42	AC		C
"	9-43	AC		C
"	9-44	AC		C
"	9-45	AC		C
RH-IX2168SCZZ	8-122	BB		B
RH-IX2201SCZZ	8-125	AG	N	B
RH-IX2202SCZZ	8-118	AM	N	B
RH-IX2203SCZZ	8-119	AH	N	B
RHEDZ2063XHZZ	6-14	BQ	N	B
RMOTZ2161XHZZ	5-14	AX	N	B
RR-TZ3017SCZZ	8-225	AC		B
-"	8-226	AC		B
"	8-227	AC		B
"	8-230	AC		B
"	8-231	AC		B
"	8-232	AC		B
"	8-233	AC		B
"	8-235	AC		B
"	8-236	AC		B
RR-TZ3018SCZZ	8-224	AC		B
	8-228	AC		B
"	8-229	AC		B
"	8-237	AC		B
RR-TZ3029SCZZ	8-234	AB		B
RRLYD3130SCZZ	8-239	AN		B
RRLYD3433XHZZ	9-30	AH		B
RTRNI2164XHZZ	9-84	AG		B
[S]				
SPAKA213AAXZZ	7-11	AC		D
SPAKA261CXHZZ	7-17	AC	N	D
SPAKA262CXHZZ	7-18	AC	N	D
SPAKA328CXHZZ	7-5	AC	N	D
SPAKC263CXHZZ	7-19	AG	N	D
SPAKC300CXHTZ	7-19	AK	N	D
SPAKP4381AXZZ	7-16	AG		D
[7]				
TCADZ3055XHZZ	7-1	AN	N	D
TINSE4157XHTZ	7-6	AK	N	D
TINSE4162XHTZ	7-6	AL	N	D
TLABH276CXHZZ	7-7	AD	N	D
TLABH4161AXZZ	1-27	AD		D
[U]				
UBATL2049SCZZ	8-1	AF		B
[V]				
VCCCCY1HH101J	8-19	AA		C
"	8-20	AA		C
"	8-50	AA		C
"	8-57	AA		C
"	8-64	AA		C
"	8-65	AA		C
"	8-73	AA		C
"	8-74	AA		C
"	8-75	AA		C
"	8-76	AA		C
VCCCCY1HH150J	8-70	AB		C
"	8-71	AB		C
"	8-78	AB		C
VCCCCY1HH180J	8-27	AA		C
VCCCCY1HH221J	8-92	AA		C
"	8-201	AA		C
"	8-217	AA		C
"	9-21	AA		C
"	9-27	AA		C
VCCCCY1HH330J	8-28	AA		C
"	9-16	AA		C
	9-20	AA		C
VCEAGA0JW227M	8-6	AD		C
"	8-7	AD		C
VCEAGA1EW476M	8-2	AA		C
"	8-10	AA		C
VCEAGA1HW106M	8-4	AA		C
	8-11	AA		C
"	8-13	AA		C
"	8-14	AA		C
"	9-10	AA		C
VCEAGA1HW107M	8-5	AA		C
	8-8	AA		C
"	8-12	AA		C

PARTS CODE	No.	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { PRICE } \\ \text { RANK } \end{array}\right. \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	PART RANK
VCEAGA1HW226M	8-3	AB		C
"	8-9	AB		C
"	9-3	AB		C
"	9-4	AB		C
"	9-6	AB		C
"	9-7	AB		C
"	9-9	AB		C
"	9-11	AB		C
"	11-1	AB		C
VCEAGA1HW475M	9-5	AA		C
VCKYCY1AF105Z	8-16	AC		C
"	8-17	AC		C
"	8-23	AC		C
"	8-29	AC		C
"	8-30	AC		C
"	8-33	AC		C
"	8-34	AC		C
"	8-36	AC		C
"	8-42	AC		C
"	8-43	AC		C
"	8-44	AC		C
"	8-45	AC		C
"	8-46	AC		C
"	8-48	AC		C
"	8-69	AC		C
"	8-83	AC		C
"	8-85	AC		C
"	8-91	AC		C
"	8-93	AC		C
"	8-96	AC		C
"	9-14	AC		C
"	9-19	AC		C
VCKYCY1CB104K	8-81	AB		C
"	8-82	AB		C
"	8-88	AB		C
"	9-25	AB		C
VCKYCY1EB393K	9-15	AB		C
VCKYCY1EF104Z	8-15	AA		C
	8-32	AA		C
"	8-35	AA		C
"	8-41	AA		C
"	8-58	AA		C
"	8-72	AA		C
"	8-77	AA		C
"	8-87	AA		C
"	8-94	AA		C
"	8-95	AA		C
"	9-12	AA		C
VCKYCY1HB102K	8-21	AA		C
"	8-22	AA		C
"	8-24	AA		C
"	8-25	AA		C
"	8-37	AA		C
"	8-38	AA		C
"	8-39	AA		C
"	8-49	AA		C
"	8-53	AA		C
"	8-54	AA		C
"	8-55	AA		C
"	8-56	AA		C
"	8-97	AA		C
"	9-24	AA		C
"	9-28	AA		C
VCKYCY1HB103K	8-67	AA		C
"	9-26	AA		C
VCKYCY1HB222K	9-22	AA		C
"	9-29	AA		C
VCKYCY1HB472K	8-68	AA		C
VCKYCY1HB821K	9-18	AA		C
VCKYPU1HF223Z	11-2	AA		C
VCKYTV1CF225Z	8-26	AD		C
"	8-40	AD		C
	8-47	AD		C
"	8-51	AD		C
"	8-52	AD		C
"	8-59	AD		C
"	8-60	AD		C
"	8-61	AD		C
"	8-62	AD		C
"	8-63	AD		C

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	NEW MARK	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$
VCKYTV1HF104Z	8-18	AA		C
"	8-31	AA		C
"	8-79	AA		C
"	9-13	AA		C
"	9-17	AA		C
"	9-23	AA		C
VCTYPA1HF104Z	8-98	AC		C
VHDDA204K//-1	9-36	AC		B
VHDDSS133//-1	9-34	AA		B
"	9-35	AA		B
VHDHRW0202B-1	8-111	AD		B
VHD1SS355//-1	8-109	AB		B
"	8-110	AB		B
"	8-112	AB		B
"	8-113	AB		B
"	8-114	AB		B
"	8-115	AB		B
VHEHZ2C1///-1	9-87	AA		B
	9-88	AA		B
VHEHZ27-1//-1	9-89	AB		B
VHEMTZJ5R1B-1	9-90	AB	N	B
VHE1N4748A/-1	8-108	AC		B
VHINJM2113M-1	8-128	AG		B
VHINJM2904M-2	9-37	AG		B
	9-38	AG		B
VHINJM318M/-F	8-126	AF		B
VHISCE114//-1	8-124	BG		B
	8-127	BG		B
VHITCD1208AP1	11-4	AX		B
VHITD62001AP1	8-117	AE		B
VHIW24258S7LE	8-123	AQ		B
VHI27020FPS0B	8-121	BN	N	B
VHI62FP332P-1	8-238	AF		B
VHPSG206S//-1	8-135	AG		B
	8-136	AG		B
VHPSNK15A24-1	4-14	AZ		B
VHPTLP521-1BL	9-46	AE		B
VHVERZV5D471/	9-85	AC		B
	9-86	AC		B
VHVRA391PV6-1	9-1	AE		B
VRD-HT2HY223J	9-50	AA		C
VRD-RC2EY222J	11-6	AA		C
VRD-RC2EY390J	11-7	AA		C
VRS-CY1JB000J	8-66	AA		C
"	8-80	AA		C
"	8-84	AA		C
"	8-86	AA		C
"	8-89	AA		C
"	8-90	AA		C
"	8-129	AA		C
"	8-130	AA		C
"	8-131	AA		C
"	8-133	AA		C
	8-134	AA		C
"	8-145	AA		C
"	8-151	AA		C
"	8-152	AA		C
"	8-153	AA		C
"	8-155	AA		C
"	8-156	AA		C
"	8-158	AA		C
"	8-163	AA		C
"	8-168	AA		C
"	8-182	AA		C
"	8-184	AA		C
"	8-196	AA		C
"	8-197	AA		C
"	8-202	AA		C
"	8-203	AA		C
"	8-207	AA		C
"	8-210	AA		C
"	8-215	AA		C
"	8-216	AA		C
"	8-218	AA		C
"	8-220	AA		C
"	9-65	AA		C
"	9-73	AA		C
"	9-77	AA		C
"	9-80	AA		C
"	9-81	AA		C

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	$\begin{array}{\|l\|} \hline \text { NEW } \\ \text { MARK } \end{array}$	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$
VRS-CY1JB101J	8-181	AA		C
	9-61	AA		C
VRS-CY1JB102J	8-174	AA		C
	8-185	AA		C
"	8-191	AA		C
"	8-208	AA		C
"	9-63	AA		C
,	9-69	AA		C
	9-74	AA		C
VRS-CY1JB103J	8-144	AA		C
	8-157	AA		C
"	8-162	AA		C
	8-170	AA		C
"	8-221	AA		C
"	8-222	AA		C
"	8-223	AA		C
"	9-75	AA		C
VRS-CY1JB104J	8-183	AA		C
	8-200	AA		C
"	8-204	AA		C
VRS-CY1JB105J	8-188	AA		C
VRS-CY1JB106J	8-149	AA		C
VRS-CY1JB113J	8-199	AA		C
VRS-CY1JB151J	9-68	AA		C
VRS-CY1JB152J	9-70	AA		C
VRS-CY1JB153J	9-56	AA		C
VRS-CY1JB203J	8-176	AA		C
	8-186	AA		C
"	9-55	AA		C
"	9-62	AA		C
"	9-78	AA		C
"	9-79	AA		C
VRS-CY1JB221J	8-187	AA		C
VRS-CY1JB222J	8-209	AA		C
VRS-CY1JB223J	8-150	AA		C
"	8-169	AA		C
VRS-CY1JB224J	8-160	AA		C
	8-219	AA		C
	9-67	AA		C
VRS-CY1JB271J	8-142	AA		C
"	8-147	AA		C
"	8-148	AA		C
"	8-159	AA		C
	8-161	AA		C
"	8-164	AA		C
"	8-165	AA		C
"	8-166	AA		C
"	8-167	AA		C
	8-171	AA		C
"	8-172	AA		C
"	8-173	AA		C
"	8-177	AA		C
"	8-178	AA		C
"	8-189	AA		C
"	8-190	AA		C
"	8-211	AA		C
	8-212	AA		C
	8-214	AA		C
VRS-CY1JB301J	9-57	AA		C
VRS-CY1JB302J	8-205	AA		C
VRS-CY1JB332J	9-53	AA		C
	9-66	AA		C
	9-76	AA		C
VRS-CY1JB333J	8-192	AA		C
VRS-CY1JB393J	8-195	AA		C
	9-72	AA		C
VRS-CY1JB433J	8-206	AA		C
VRS-CY1JB471J	8-175	AA		C
"	8-179	AA		C
	8-180	AA		C
VRS-CY1JB472J	8-194	AA		C
"	8-198	AA		C
"	9-60	AA		C
VRS-CY1JB473J	9-58	AA		C
VRS-CY1JB474J	8-143	AA		C
VRS-CY1JB513J	8-154	AA		C
VRS-CY1JB562J	8-146	AA		C
VRS-CY1JB621J	9-59	AA		C
VRS-CY1JB822J	9-71	AA		C
VRS-RE3AA102J	8-141	AA		C

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	$\begin{array}{\|l\|} \hline \text { NEW } \\ \text { MARK } \\ \hline \end{array}$	$\begin{aligned} & \text { PART } \\ & \text { RANK } \\ & \hline \end{aligned}$
VRS-TS2AD000J	8-132	AA		C
	8-213	AA		C
VRS-TS2AD101J	9-52	AA		C
VRS-TS2AD102J	9-51	AA		C
VRS-TS2AD223J	9-54	AA		C
VRSTS2AD8662F	9-64	AA		C
VSDTC143ZK/-1	8-137	AD		B
	8-138	AD		B
	9-47	AD		B
"	9-48	AD		B
VSRNC1402//-1	8-139	AC		B
	8-140	AC		B
VS2SC1815GR-1	11-5	AB		B
VS2SC2412KR-1	9-49	AD		B
[X]				
XBBSD30P06000	6-B6	AA		C
XBPSD30P06K00	1-B4	AA		C
XBPSN40P06K00	1-B5	AA		C
XEBSD20P06000	2-B1	AA		C
XEBSD30P10000	1-B2	AA		C
"	5-B2	AA		C
"	6-B2	AA		C
XEBSE30P10000	1-B10	AA		C
XEBSF30P12000	1-B11	AA		C
[0]				
0CBBFZ89256Z/	10-26	AD		B
0CBLRZ6708ZQ/	10-29	AQ	N	C
0CBLRZ6709ZQ/	10-30	AQ	N	C
0CBPJCSX2501/	10-24	AH		A
0CBPKZ1219ZZ/	10-17	AD		C
0CBPKZ1251ZZ/	10-18	AH	N	C
0CBPZZ0906ZZ/	10-25	AH		A
0CBUAC0034EL/	10-35	AD	N	B
0CBUAC0255AM/	10-33	AD	N	B
0CBUAC0264AK/	10-34	AD	N	B
0CBUAG0161EZ/	10-32	AQ		B
0CBUBB0248EZ/	10-23	AD	N	B
0CBUBC0169CL/	10-22	AE	N	B
0CBUBC0304AZ/	10-21	AE		B
0CBUBC0336AZ/	10-20	AL		B
0CBUBDBM300D/	10-57	AC		B
0CBUBXAD4R3C/	10-56	AD		B
0CBUBXAD6R2C/	10-58	AD		B
0CBUBY0020AK/	10-19	AD		B
0CBUCB0111AZ/	10-27	AM		B
0CBUDC0062MZ/	10-31	AG		B
0CBUEEB474DJ/	10-37	AC	N	C
	10-38	AC	N	C
0CBUEEC225CF/	10-36	AC	N	C
OCBUEFDR15DB/	10-45	AE		C
OCBUEFE104DH/	10-52	AD		C
OCBUEXCAA000/	10-6	AB		C
0CBUEXCAA102/	10-47	AC	N	C
OCBUEXCAA181/	10-42	AC	N	C
0CBUEXCAA334/	10-48	AC	N	C
0CBUEXCAA471/	10-44	AC	N	C
0CBUEXCAA472/	10-46	AC	N	C
0CBUEXCAA473/	10-41	AC	N	C
	10-43	AC	N	C
OCBUEXCAA682/	10-40	AC	N	C
OCBUEXDAA332/	10-51	AC	N	C
0CBUEXDAA561/	10-39	AC	N	C
0CBUEYAA2202/	10-49	AC	N	C
OCBUEYAA8201/	10-50	AC	N	C
0CBUEZ0666ZZ/	10-54	AD	N	B
0CBUFBA102EE/	10-55	AD		B
0CBUGAC331TR/	10-8	AF		C
0CBUGAE331TS/	10-7	AH		C
0CBUGAL151SM/	10-2	AL		C
0CBUGCD104DT/	10-11	AD	N	C
0CBUGCM332BJ/	10-16	AF		C
0CBUGCS152JG/	10-10	AD	N	C
0CBUGCU472BW/	10-13	AD	N	C
0CBUGCU681EL/	10-3	AD	N	C
0CBUGFF472EH/	10-5	AD		C
OCBUGXGCF102/	10-12	AD	N	C
0CBUGXGCF104/	10-9	AD	N	C
0CBUGXGCF152/	10-4	AF	N	C
0CBUGXGDF271/	10-14	AD	N	C
0CBUGZ1274ZZ/	10-1	AD	N	C

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	$\begin{aligned} & \text { NEW } \\ & \text { MARK } \end{aligned}$	$\begin{aligned} & \text { PART } \\ & \text { RANK } \end{aligned}$
0CBUGZ1274ZZ/	10-15	AD	N	C
0CBUKZ0790ZZ/	10-28	AK		C
0CB829655033/	10-53	BE	N	B

SHARP

COPYRIGHT © 2000 BY SHARP CORPORATION

ALL RIGHTS RESERVED.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

